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Abstract

This thesis develops and describes methods for real-time tracking, segmentation
and 3-dimensional (3D) model acquisition, in the context of developing games for
stroke patients that are rehabilitating at home. Real-time tracking and reconstruc-
tion of a stroke patient’s feet, hands and the control objects that they are touching
can enable not only the graphical visualization of the virtual avatar in the rehabili-
tation games, but also permits measurement of the patient’s performs.

Depth or combined colour and depth imagery from a Kinect sensor is used
as input data. The 3D signed distance function (SDF) is used as implicit shape
representation, and a series of probabilistic graphical models are developed for the
problem of model-based 3D tracking, simultaneous 3D tracking and reconstruction
and 3D tracking of multiple objects with identical appearance. The work is based
on the assumption that the observed imagery is generated jointly by the pose(s)
and the shape(s). The depth of each pixel is randomly and independently sampled
from the likelihood of the pose(s) and the shape(s). The pose(s) tracking and 3D
shape reconstruction problems are then cast as the maximum likelihood (ML) or
maximum a posterior (MAP) estimate of the pose(s) or 3D shape.

This methodology first leads to a novel probabilistic model for tracking rigid 3D
objects with only depth data. For a known 3D shape, optimization aims to find the
optimal pose that back projects all object region pixels onto the zero level set of the
3D shape, thus effectively maximising the likelihood of the pose. The method is
extended to consider colour information for more robust tracking in the presence
of outliers and occlusions. Initialised with a coarse 3D model, the extended method
is also able to simultaneously reconstruct and track an unknown 3D object in real
time. Finally, the concept of ‘shape union’ is introduced to solve the problem of
tracking multiple 3D objects with identical appearance. This is formulated as the
minimum value of all SDFs in camera coordinates, which (i) leads to a per-pixel
soft membership weight for each object thus providing an elegant solution for the
data association in multi-target tracking and (ii) it allows for probabilistic physical
constraints that avoid collisions between objects to be naturally enforced.

The thesis also explore the possibility of using implicit shape representation
for online shape learning. We use the harmonics of 2D discrete cosine transform
(DCT) to represent 2D shapes. High frequency harmonics are decoupled from
low ones to represent the coarse information and the details of the 2D shape. A
regression model is learnt online to model the relationship between the high and
low frequency harmonics using Locally Weighted Projection Regression (LWPR).
We have demonstrated that the learned regression model is able to detect occlusion
and recover them to the complete shape.
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Introduction

This chapter details the motivation behind this thesis, the objectives, major

contributions and basic outline of our work.

1.1 Stroke rehabilitation

Stroke – the blockage or burst of a blood vessel in the brain – is a sudden and dev-

astating illness that affects the way the patient’s brain and body function. Every

year, in high and middle income countries, there are around 16,000,000 first occur-

rences of stroke [86], and there are approximately 152,000 strokes in the UK [134].

Most people affected are over 65, it occurs with decreasing frequency in those who

are younger, including children and even babies.

The mean length of stay in hospital for stroke patients is around 20 days [4].

After discharge from hospital, even those unfortunate enough to have suffered

substantial physical impairment are required to rehabilitate for the most part at

home. Although patients are given daily exercises to perform, the daily systematic

monitoring of recovery has been all but impracticable on grounds of cost. Instead,

patients are left somewhat to their own devices in the periods between increasingly
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less frequent visits by a therapist to the home or by the patient back to the hospital.

Without daily measurement of progress, the natural tendency is for patients to

neglect their routines, only becoming re-motivated shortly before a visit.

Home connection to the Internet and the development of motion capture tech-

nology has for some time — perhaps two decades now — promised to brighten

this bleak landscape. However, for most of this time sensor technology has been

ill-suited to the task. It is unreasonable to expect patients either to attach multiple

motion gauges (for inside-out sensing or egocentric) or to wear reflective markers

in front of a calibrated multi-camera mocap rig (for outside-in sensing).

A transformational change has been brought about recently by the development

of mass-produced, affordable, but highly engineered sensors designed principally

for game-playing in the home. Devices such as the Nintendo Wii remote, the Mi-

crosoft Kinect, and the Nintendo balance board [3, 1, 2] have been demonstrated

tracking human movement with a latency (pipeline delay) and accuracy wholly

commensurate with the clinical demands of rehabilitation (e.g. Clark et al. [30]).

Moreover, the game-playing environment for which the sensors are designed is al-

ready one which can aid rehabilitation, by turning the tedium of repetitive motion

into something more stimulating, as shown by, for example, Boian et al. [16], and

Lauterbach et al. [70].

These devices have already spawned commercial games aimed at the fitness

and well-being markets. However, much less developed are games that are born of

clinical research and that aim to guide recovery through exercise (e.g. Cameirao et

al. [23]; Burke et al. 2009 [21]; Zimmerli et al. [150]). Many of these non-commercial

games do not follow good game design practice (Schell [122]), are over simplified,

and have poor graphics. Moreover, both existing commercial and research offer-

ings lack the facilities to record the patient’s motion continuously, and to provide

feedback to correct possibly harmful motion habits. Beyond the immediate visual
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Figure 1.1: The overall architecture of the home rehabilitation system developed in the
the EU Rewire project.

feedback during the exercise, longer term feedback through an authoritative but

friendly graphical agent — an on-screen therapist — is needed to summarize and

comment upon progress, and to admonish and encourage as appropriate. This

same feedback should also allow a game to self-adapt its complexity to permit a

patient always to benefit from playing it, as suggested by Colombo et al. [31] and

Mainetti et al. [83].

1.2 The REWIRE project

Developing a system to addresses current shortcomings by combining clinical and

information engineering expertise is the objective of the EU FP7 project REWIRE1,

which is October 2014 is undergoing its first clinical trials in both Switzerland and

Spain.

1http://www.rewire-project.eu

http://www.rewire-project.eu
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Figure 1.2: The Kinect sensor (left) and the setup of patient station of home rehabilitation
platform (right).

Fig. 1.1 shows the three main components of system architecture. The network

station with database server is a central repository for software, clinical expertise,

and anonymised patient data for data-mining. The hospital station allows clinician-

s direct access to the performance of their current group of patients, with both

recorded data and streamed real-time results available, along with other patient

records. The actual performance of each patient is monitored at home by their own

patient station, comprising a high-end laptop equipped with a GPU as co-processor.

Its inputs are from a Microsoft Kinect, a balance board, and in some cases a wear-

able monitor. The arrangement, using a TV for larger display, set up is shown in

Fig. 1.2.

1.3 The functional design of patient station

The functional design of the patient station is shown in Fig. 1.3. Moving round

the system diagram there are two principal areas of information engineering chal-

lenge associated with it. While we write of two engineering challenges, it is worth

recalling that the real challenge here rests with a rather unwell patient who must

re-learn their damaged motor control skills.

First is that the games to be played, their design, selection and sequencing, must
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Figure 1.3: The functional architectures of the patient station developed in the the EU
Rewire project.

be informed by clinical assessment and determined by existing clinical protocol.

The Game Interpreter in Fig. 1.3 is then not a mere game engine, but one wrapped

up in a clinical knowledge-based system. This system, the Intelligent Game Engine

for Rehabilitation (IGER), has been designed and built by Borghese and collabora-

tors at the University of Milano [18, 101, 17]. On the display, the patient views him-

or her-self as an avatar embedded in a virtual game environment, and can interact

with it by moving. In most cases, patients prefer to see a cartoon character as a-

vatar rather than their own appearance mapped onto the screen. Unsteady motion

or failure to reach a goal is easier to accept if the patient is not represented directly.

Via their visual and motor control system, the stimulus on the screen prompts a

movement from the patient.

As shown in Fig. 1.3, the second challenge, and the motivation for the work in

this thesis, is the segmentation of the patient from the scene and the tracking in

3D of the patient’s movement. This allows the changing pose to be fed back to the

avatar. Fig. 1.4 shows the output of the game engine during two games that provide

exercise for the upper and lower limbs. In (a) the patient uses a control object to

move a net in the game to capture moving butterflies. Part (b) is a balancing game,

requiring the the patient’s feet to be tracked2. Patients prefer to be treated rather

gently and to be taken somewhat outside reality.

2The child-like appearance of the games is the result of careful research by the Milan group [18],
rather than one of whimsy.
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(a)

(b)

Figure 1.4: (a,b) Examples of subject playing games that exercise (the upper limbs and
lower limbs, respectively.)
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Local monitoring alone is of course insufficient, and as mentioned above the

REWIRE system allows the results of exercises to be uploaded to the hospital sta-

tion for review, and adjustment of the clinical demand to be downloaded. Interest-

ingly, the hospital station also permits virtual interaction between other patients,

clinicians, therapists and carers, allowing the sharing of good practice and, impor-

tantly, the reduction of patient isolation. Amongst those who consent, patients are

allowed to send messages of encouragement and advice to others. Anonymized

patient data can be returned to the root database server, and machine learning

techniques have been developed to discover common trends in the outcomes reha-

bilitation treatments.

1.4 The Kinect sensor

The research described in this thesis is concerned with the analysis of colour and

depth imagery obtained from a Kinect sensor in the patient station. In the patient

station, the colour and depth imagery for patient tracking is obtained directly from

a Microsoft Kinect sensor. The Kinect sensor is a line of RGB-D input devices by

Microsoft for Xbox 360 and Xbox One video game consoles and Windows PCs. The

device features an RGB camera, a depth sensor and a multi-array microphone. The

internal structure of the Kinect sensor is shown in Fig. 1.5. The colour camera by

default output RGB video stream uses 8-bit VGA resolution (640×480 pixels). The

depth sensor consists of an infrared laser projector combined with a monochrome

CMOS sensor, which captures video data in 3D under any ambient light conditions.

The monochrome depth sensing video stream is in VGA resolution (640×480 pixel-

s) with 11-bit depth, which provides 2048 levels of sensitivity. The first-generation

Kinect was first introduced in November 2010 and its depth sensor has a practical

ranging limit of 1.2∼3.5 m. A version for Windows was released in February,2012,

which extended the range to 0.7∼6 m. In our system, we have used the later Kinect
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Figure 1.5: The internal structure of the Kinect sensor.

for Windows version. The colour camera and the depth sensor of a Kinect is not

in the same location, and there is a fixed baseline between the two cameras that

requires calibration. Also, the intrinsic parameters of the colour camera and the

depth sensor are not provided. Our method for calibrating the Kinect sensor is

developed in Chapter 3.

1.5 Specific challenges raised in REWIRE’s feedback

loop

Understanding how patients are moving when in proximity to objects and in a

visually cluttered, everyday or uncontrolled environment gives rise to a number of

research problems in segmentation, 3D shape reconstruction and 3D model-based

pose tracking. In summary, these are:

• An uncalibrated environment: A typical setup for 3D reconstruction of an

object is a calibrated multi-camera system or a 3D scanner, but neither is

suitable for use in a patient’s home environment owing to their complexity

and cost. Although the Kinect is pre-calibrated by the manufacturer, early

tests indicated that the calibration was insufficiently accurate for the task of
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tracking small, untextured objects.

• Full DoF pose estimation: For the purpose of accurate exercise evaluation,

the full 6 degrees of pose freedom of a control object and specific parts of the

body need to be recovered at each frame. Naı̈ve tracking in 2D in the image

domain, or in 3D using bounding boxes would not be adequate.

• Occlusion and missing data: The small objects we wish to track may exhibit

drop out in the depth image due to reflection or other triangulation failure of

the structured light depth sensor. Furthermore, the object being tracked can

be expected to be partially occluded by another moving object. For example,

the control object might be occluded by the hand, and one foot may be oc-

cluded by the other foot. The tracker must neither end up tracking the wrong

object nor fail completely.

• Appearance changes: The visual appearance of objects can change over time,

due either to changing room lighting or surface conditions or colour. For

example, a shoe may be red on one side, blue on the other side.

• Identical appearance in multi-target tracking: Neither colour nor depth are

wholly reliable discriminators. Similarity in appearance is a fundamental

problem when tracking two interacting feet, for example. Independent single

object target trackers might easily confuse data association when they move

close together.

• Real-time performance: The solution to the previous challenges have to be

capable of processing the incoming RGB-D data in real-time, in order to be

useful. Real-time is taken to be video rate, which is usually defined as 30 Hz

or greater with less than 5 ms latency.
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1.6 Thesis approach and summary

While the REWIRE project provides the motivation for the research presented in

this thesis, and provides a exacting limits on practical performance, it seems appro-

priate in the body of the thesis to address the scientific questions raised in a general

rather than specific manner. These questions lie in the areas of segmentation, 3D

shape reconstruction and model-buiding, and 3D model-based pose tracking, using

as raw input colour and depth imagery

There are two strong threads running through the work. First, throughout the

thesis, we use level-set embedding functions to represent 3D and 2D shapes — the

surface of a 3D shape and the contour of a 2D shape are implicitly represented by

the zero-level set of the embedding function. Second is the adoption throughout

of Bayesian methods. It is assumed that each observed RGB-D image generated

by the object embedding function and the current object pose such that there is

pixel-wise independence. This allows us to model the tracking and reconstruction

problem in a probabilistic way and estimate the pose and the shape as a maximum

likelihood (ML) or maximum a posteriori (MAP) estimation for the optimal pose

or shape (embedding function) from which the current RGB-D image is generated.

Chapter 2: Review

Chapter 2 provides a broad overview of previous related methodologies for real-

time tracking, 3D reconstruction, and occlusion reasoning, and critical conclusions

are drawn. Details of particularly relevant work within the last five years will then

be revisited chapter by chapter through the thesis.
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Figure 1.6: Example of 3D tracking. (a) The depth image with projection of tracked object
overlaid in blue. (b) The recovered pose mapped on to a graphics object. From Chapter 3.

Chapter 3: 3D pose tracking from depth, and application to calibration, etc

In Chapter 3, we propose a probabilistic model for tracking a single known

object in 3D using only depth data. The pose tracking is cost as a minimisation

problem which can be efficiently solved by second-order gradient-based methods.

Instead of relying on the gradients of the depth image, which amplifies noise, the

minimisation uses the much smoother gradients of the SDF to guide the search for

an optimum. Usefully, a number of the gradients required can be precomputed.

Unlike traditional hypothesis – test methods, our work does not ‘render’ the

object with current pose into observation domain, so no computational intensive

Z-buffering is required. This makes our method inherently suitable for GPU par-

allelization. Our framework is region-based, so no point correspondences are re-

quired and also it is robust to occlusion and missing data. Both CPU and GPU

implementation have achieved real-time performance. An example of 3D tracking

with only depth data is shown in Fig. 1.6.

A number of extensions of the same framework are demonstrated. The two

most relevant to the REWIRE project are the algorithm’s extension from a 6-DoF

to an 11-DoF optimization for both pose and intrinsic calibration parameters of

the depth camera. The tracking in depth and colour separately is then used to

determine the mapping between the colour and depth cameras.
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Figure 1.7: Example of simultaneous tracking and reconstruction. From Chapter 4.

Chapter 4: Simultaneous reconstruction and tracking from depth and colour

In Chapter 4, we extend the graphical model to describe the per-pixel gener-

ation of both the depth and colour images of a scene with the aim of permitting

simultaneous pose tracking and 3D reconstruction. The tracking and reconstruction

problems are casted as the MAP estimation on two simplification of the extended

graphical model. As before, the probabilistic model leads to a differentiable cost

function that can be efficiently solved by second-order optimization.

The use of colour information makes the tracking method robust to close-to-

surface outliers, missing data and occlusion, while still achieving real-time perfor-

mance on both our CPU and GPU implementation. For reconstruction, we extend

the idea of space carving. An inside/outside volumetric model of the object is

learnt online while tracking. Initialized with a simple model (e.g. a ball or a box),

the 3D shape is reconstructed by evolving a 3D level-set embedding function. The

reconstruction method can be implemented on GPU in massive parallel fashion,

also achieving real-time performance.

An example of simultaneous tracking and reconstruction is shown in Fig. 1.7.
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Figure 1.8: Example of 3D tracking of multiple objects with identical appearance. (a) The
original image showing the yellow objects and (b) now overlaid with projections of the
tracked objects in red. From Chapter 5.

Chapter 5: Tracking multiple objects with identical appearance

Chapter 5 is the last of the trio which exploit the implicit shape representation

for efficient tracking and reconstruction. We extend the probabilistic formulation

for 3D tracking developed in Chapter 4 to account for the tracking of multiple

moving objects with identical appearance. We use an augmented graphical model

to handle the data association problem and enforce physical constraint at the same

time. Objects are again represented by 3D SDFs, but we propose a convenient

fusion the SDFs in the camere frame to handle the two challenging problems in

multi-target tracking of (i) data association and (ii) physical constraint.

Unlike most current approaches that use distinctive appearance to distinguish

between multiple objects, our probabilistic model automatically compute a ‘soft’

membership for each pixel in presents of identical appearance, which solves the

data association problem efficiently. The physical constraint that multiple objects

should not penetrate each other is naturally enforced probabilistically.

The method is computationally efficient, with a linear increase in computational

time w.r.t the number of objects. Even the CPU implementation is able to track five

objects in real-time. An example of multi-object tracking is shown in Fig. 1.8.
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(a) (b)

Figure 1.9: Example of 2D occlusion recovery for tracking from Chapter 6.

Chapter 6: Online learning of 2D shapes for occlusion detection and recovery

In Chapter 6, we explore the possibility of using an implicit shape representation

for online shape learning, and consider the detection and recovery from occlusion

for 2D tracking.

2D shapes are represented by the harmonics in the 2D discrete cosine transform

(DCT) of their contours. We propose a regression model to map from the high

frequency harmonics to low frequency ones. This is learnt online using Locally

Weighted Projection Regression (LWPR). After sufficient observations of a set of

complete shape as online training, the model is able to detect occlusion and recover

them the the complete shape in real-time. The method can be used a flexible

component for any region-based or segmentation-based 2D tracker. An example of

occlusion recovery prior to 2D tracking is shown in Fig. 1.9.

Though not used in in entirety on-line in REWIRE, a particular useful part has

been the DCT mechanism to describe contours in [102].
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Chapter 7: Conclusions, and REWIRE revisited

In Chapter 5 we present a thesis summary, draw conclusions, and suggest pos-

sible avenues for future research. We also provide a short postscript on the current

status of the REWIRE project.

Appendix: Superpixel generation on GPU

Much of the implementation in the thesis has involved coding on GPUs, and in

the Appendix we provide a description of GPU version of the SLIC algorithm for

superpixel generation.
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Literature Review

2.1 Introduction

Our purpose here is to give a broad review on approaches to model-based 3D

tracking, 3D model acquisition and multi-object tracking and to provide general

discussion of the advantages and disadvantages of existing methods. More recent

work — say those within last five years — leading to the state of the art will be

discussed in the relevant chapters themselves.

2.2 Model-based 3D tracking

Methods for model-based 3D tracking in the literature can be roughly categorized

into three sets based on the dimensionality of the image cue that is used, i.e.,

edge-based methods, point-based methods and region based methods as detailed in the

following subsection. Further discussion of real-time model-based 3D tracking ap-

proaches in recent years is provided in Chapter. 3.
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2.2.1 Edge-based methods

Most early work in model-based 3D tracking was edge based. Two early seminal

works are Lowe [79] and Harris [48]. These methods are similar in that they both

assume known model and an estimate of the current pose is available. The 3D

model is then projected in the image to generating a prediction view, and corre-

spondence is sought between the prediction and the image evidence.

Lowe’s method first extracts all the edges from the full image, using the Marr

and Hildreth [85] edge detector. These edges are then connected to form lines.

Correspondence is established between the most reliable lines extracted from the

edges and those from the predicted image. Another prediction view is then gener-

ated from the new estimation of the pose and further correspondences established

between the unmatched lines from the image and the model. The pose update step

is a minimisation of a sum of weighted least squares. The multi-step methodol-

ogy reduces the search space incrementally, using the most likely matches in the

image. The disadvantage is that if the first step leads to incorrect matchings, the

other step is likely to fail. Related to this work, Koller et al. [59] represent the 3D

model with line edges, which are defined by length, the coordinates of the middle

point and the orientation angle. Pose recovery is done by minimising a function

based on the Mahalanobis distance [82] between all model segments and all data

segments, using the Levenberg–Marquardt algorithm (Levenberg [73], Marquardt

[84]). These approaches tend to be unreliable, as they rely heavily on an accurate

edge extraction step.

Harris’ alternative method RAPiD, begins by generating the prediction view

instead, predicting the position of the higher contrast model edges. By 1D search

along the cardinal direction from control points on these edges, the algorithm finds

the most prominent edge in the image (see Fig. 2.1). The distances between each

control point and the closest image edges contribute collectively to a value for the a
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Observed image edge

Projected model edge

Control points

Figure 2.1: RAPiD control points and distances from projected to image edges.

pose correction, which is recovered using least-squares. The selection of the closest

edge can also be augmented with a culling step, which ignores weak edges. To

determine feature visibility, a precomputed table of visible edges is used.

Several improvements have been proposed to RAPiD. For example, Armstrong

and Zisserman [8] group control points into robust primitives (lines, conics, etc.),

then use RANSAC (see Fischler and Bolles [40]) to filter the edges detected around

each control point. These primitives can also be eliminated from the pose update

step. A greedy approach is used: the primitives are eliminated one by one and

the pose correction is computed from the remaining ones. If the pose correction

leads to a smaller projection error, the primitive is eliminated. Another approach

is that of Drummond and Cipolla [39] where the influence of the control points

in the pose optimization is weighted inverse proportionally to the number of edge

strength maxima visible within the search range around the control point. The se-

lection process for the visible edges is also improved by replacing the precomputed

indexing table with a 3D rendering stage. Drummond and Cipolla [39] also replace

the original least squares approach with a weighted least squares one. Fig. 2.2

shows a set of example results from Drummond and Cipolla [39].

Another variation improvement was introduced by Kollning and Nagel [61]
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Figure 2.2: Example results from Drummond and Cipolla [39].

who proposed removing the edge detection step. Instead, the model projection

is fitted the to the image gradients directly. Theoretically this method avoids the

loss of information associated with an edge detection step; in practice, it leads to a

much smaller basin of convergence.

All the above mentioned methods ignore the inherent multimodality of the im-

age feature-pose mapping i.e. multiple object poses lead to similar image features.

To solve this problem one solution is to keep track of multiple poses, rather than

a single best one. One way of doing this is to use a particle filter. This approach

was introduced to computer vision by Isard and Blake [53] and used in the context

of 3D tracking by, among others, Vacchetti et al. [139] and Klein and Murray [57].

One problem with particle filters is that they require a large number of particles to

produce accurate results.

Regardless of the approach used, all edge based methods are susceptible to

motion blur, occlusions and cluttered background, as these lead to the corruption

of image edges. Furthermore, as many of these methods rely on line segments for

matching, they are also often limited to simplistic “well-carpentered” 3D models,

so cannot work with arbitrarily shaped objects.

2.2.2 Point-based methods

As with edge based methods, point based methods work by matching a set of fea-

tures from the image with a set of features on the model. The difference is that,
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Figure 2.3: Example results from Skrypnyk and Lowe [130].

instead of edges, the features they use are interest points. These tend to be more

invariant to disturbances (such as changes in scale, viewpoint and illumination),

and therefore yield better results. Also, often, they do not require any pose initial-

ization.

Early examples of point-based methods are Uenohara and Kanade [138] and

Ravela et al. [110]. Rather than keeping a 3D model of the object, these methods

use pose-dependent templates images. Patches are selected from both the real

and the template image and are matched using a combination of normalized cross

correlation and steerable filters (for invariance to translation and rotation). Such

methods do show good results, but are not practical since they require a manual

selection of the features.

The rise of effective and automatically discoverable descriptors for point fea-

tures (e.g. Lowe [80] or Lepetit et al. [72]) has seen real-time methods for point-

based model-based tracking become more practical, as shown by, among others

Skrypnyk and Lowe [130], Lepetit et al. [72] and Ozuysal et al. [99]. These articles

are exponents of a related methodology, called tracking by detection. The tem-

plate images of Uenohara and Kanade [138] and Ravela et al. [110] are replaced by

mapping relating feature points to the pose of the object. At run time, features are

extracted from the image and matched to entries in the database.

In Skrypnyk and Lowe [130], the offline phase consists of building a sparse 3D

model of the target object, using multiple views and SIFT features (Lowe [80]).

Online, at every frame, SIFT features are first extracted. Next they are matched to
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the ones from the 3D model using the Best-Bin-First algorithm (Beis and Lowe [11]),

resulting in a collection of 2D to 3D correspondences. The final pose is obtained

using a combination of RANSAC and Levenberg-Marquardt. The system was too

slow for real time performance, running at an average of 4 fps (in 1997). Fig. 2.3

shows example results from Skrypnyk and Lowe [130]. A related method is that of

Lepetit et al. [72], where a classifier based on randomized trees is used for feature

matching. RANSAC is again used pose recovery. Also, unlike Skrypnyk and Lowe

[130], both accurate 3D geometry of the object and a few images (which are then

used to texture the 3D geometry) are assumed to be known. The requirement

for an accurate 3D model is removed in Ozuysal et al. [99], where the texture

and geometry of the object is computed offline using bundle adjustment, with an

ellipsoid as an initial shape approximation.

Assuming a well textured object, point-based methods have been shown to have

good accuracy and robustness to occlusions and changes in illumination. Real time

performance has been achieved in constrained scenarios. However, issues, such as

their inability to cope with motion blur or untextured objects, still exist.

2.2.3 Region and template matching-based methods

Region-based methods such as Rosenhahn et al. [117, 123] and Dambreville et al.

[37] seek alignment of the projection of the occluding boundaries of the object with

a regional segmentation of the image. This is done by maximizing the discrimina-

tion between a foreground and a background region (with known image statistics),

with respect to the 3D pose of the known 3D model.

The curve separating the foreground and the background regions can be rep-

resented either explicitly or implicitly. A conventional explicit representation is to

use a collection of equally spaced points, denoted by their image coordinates (x, y).

Curves can however breakup, merge, move or disappear during the course of their
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Figure 2.4: Example level set function embedding a silhouette. (a) the embedded silhou-
ette. (b,c) 2D and 3D view of the SDF embedding function.

evolution. Using the explicit representation means that complicated methods have

to be developed to model such behaviors. This is not required when using implicit

representation, for example level sets (Osher and Sethian [98]), as they can handle

all these topological changes very easily. A 2D level set function Φ is a Lipschitz

continuous function, implicitly defining a curve as its zero level. That is to say that,

for a 2D closed curve C, we can formally write C = {(x, y) ∈ R2|Φ(x, y) = 0}. This

is called the implicit representation of the curve C. Often, a subset of these implicit

functions, namely signed distance functions (SDF) is used (see Fig. 2.4). An SDF is

a level set function for which Φ(x) = −d(x), ∀x ∈ Ω f and Φ(x) = d(x), ∀x ∈ Ωb,

where

d(x) = min
xc∈C
|x− xc| . (2.1)

Regions were first used by Rosenhahn et al. [117], where an infinite dimensional

active contour is adapted in a single iterative step, in two stages: first the contour,

represented by a zero level-set of a 2D embedding function with a shape term (to

encourage similarity between the segmentation and the expected silhouette of the

object given the current pose), is evolved to find a segmentation, in the expectation

that the contour will then match the projection of the occluding contour of the
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Figure 2.5: Example results from Gall et al. [46].

3D object. Second, each point on the contour is back-projected to a ray and the

pose is found that best satisfies the tangency constraints that exist between the

3D object and these rays. This two-stage iteration places only soft constraints on

the evolution of the contour i.e. the minimization of the energy function is done

in an infinite dimensional space, rather than in the space of possible contours.

Furthermore the 2D-3D pose matching in the two-stage iteration does not have a

large basin of convergence, which will lead to tracking failure when the object has

a large displacement. Further extensions to the method are proposed by Gall et al.

[46], where an image synthesis stage is added, and by Gall et al. [20], where the

region statistics are augmented with SIFT features and optical flow. An example

result is shown in Fig. 2.5.

Level sets are not used by Dambreville et al. [37]. Rather, this work is based on

an energy function summing two integrals – one over the foreground, one over the

background. Here a direct minimization over the pose parameters is proposed, by

differentiating these integrals with respect to the pose parameters.

Regions are less disrupted by occlusions, clutter and motion blur than edge-

based methods, making them generally more reliable than both edge and point-

based ones. Furthermore, these techniques have been shown to work with arbi-

trarily shaped objects. There are two main failure cases, namely they fail when
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the pose-silhouette mapping is ambiguous (i.e. when multiple poses project to the

same silhouette) and when the foreground and background image statistics are too

similar or are corrupted.

2.3 3D model acquisition

We categorize the methods in early literature for 3D model acquisition into two sets:

Shape from X methods and Structure from Motion-based methods. Further discussion on

recent methods and the state of-the-art in real-time dense 3D model reconstruction

is provided in Chapter 4.

2.3.1 Shape from X methods

Early works on vision-based 3D reconstruction comprise methods that recover 3D

shapes from only visual cues on image. The study of how shape can be inferred

from a single cue X is called shape from X, and examples of the various cues that

can be used include shading, focus, contour and silhouette.

The problem of recovering the shape of a surface from the variation of inten-

sity of image is known as shape from shading (Horn and Brooks [51], Zhang et al.

[148]). The method assumes that the surface under consideration is of a uniform

albedo and reflectance, and that the light source directions either known or can be

calibrated by the use of a reference object. Under the assumption of distance light

source and observer, the variation in the image intensity becomes a pure function

of the local surface orientation

I(x, y) = R(p(x, y), q(x, y)), (2.2)

where (p, q) = (zx, zy) are the depth map derivatives and R(p, q) is the reflectance
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Figure 2.6: Synthetic shape from shading from Zhang et al. [148]. Shaded images, (a,b)
with light from in front and (c,d) with light the front right; (e∼f) corresponding shape from
shading reconstructions.

map. The surface of the object is recovered either by estimating the depth map

derivatives then integrating them, or by directly minimizing the discrepancy in

the image formulation in Eqn. 2.2. In practice, however, surfaces other than plaster

casts are rarely of single uniform albedo. The shape from shading method therefore

needs to be combined with other techniques to achieve an accurate depth map.

Another strong cue for object depth is the degree of blur, which increases as

the object’s surface moves away from the camera’s focusing distance. Unlike many

vision-based techniques that estimate 3D surface by using a pin-hole camera model,

in shape from focus methods, real aperture camera models are used. A scene is

modelled as a smooth opaque Lambertian surface, and attached to the surface is

a texture r. Then the image intensity I(y) at a pixel y is usually modelled as a



2.3 3D model acquisition 28

Figure 2.7: Real time depth from defocus from Nayar et al. [91]. (a) the real-time focus
range sensor, which has a prism that splits the image into two CCD sensors and an edged
checkerboard pattern illuminated by a Xenon lamp (top); (b,c) input video frames from the
two cameras along with (d) the corresponding depth map; (e,f) two frames (you can see
the texture if you zoom in) and (g) the corresponding 3D mesh model.

convolution between the Gaussian defocus kernel hu,d and the texture r [24]

I(y) = (hu,d ∗ r)(y) , (2.3)

hu,d =
1

πσ2
s,u

exp{− (y− x)
⊤
(y− x)

2σ2
s,u

} , (2.4)

where u is the distance between the lens plane and the plane in focus in the scene

and σs,u is called the blurring radius which depends on the lens setting.

For example, a real-time depth from focus system was introduced in Nayar et al.

[91]. Fig. 2.7 shows the system. A real-time focus range sensor which employs two

image chips at slightly different depth sharing a common optical path is used as

the input device. An active illumination system was used to project a checkerboard

pattern from the camera. The system produces high-accuracy real-time depth maps

for both static dynamic scenes.

Both shape from shading and shape from focus methods provide only depth

measure instead of a whole solution for 3D model acquisition. The shape from
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Figure 2.8: The intersection of silhouette cones defines an approximate geometric repre-
sentation of an object call the visual hull. It contains the actual object and it has consistent
silhouettes. Images from Matusik et al. [87]

silhouette (first introduced in Baumgart [9]) method provides a whole solution for

obtaining 3D models from multiple images. The shape from silhouette method is

based on an approximate geometric representation of the depicted scene known as

the visual hull (see Fig. 2.8). A visual hull (Laurentini [69]) is constructed by using

the visible silhouette information from a series of reference images to determine

conservative shell that progressively enclose the actual 3D shape. In some sense,

the visual hull carves away spatial regions where the object ‘is not’. A visual hull

always contains the object. Moreover, it is an equal or tighter fit than the object’s

convex hull.

A common method used to convert silhouette contours into visual hulls is vol-

ume carving (Curless and Levoy [35], Seitz and Dyer [127]). This method removes

unoccupied regions from an explicit volumetric representation. All voxels falling

outside of the projected silhouette cone of a given view are eliminated from the

volume. The process is repeated for each reference image, resulting in a quantized

representation of the virtual hull according to the volumetric grid. In Matusik et

al. [87], a view-dependent, image-based visual hull system was introduced. Us-

ing epipolar geometry, the intersection of 3D rays in computing the virtual hull is
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Figure 2.9: Results from Space Carving algorithm. Image from Kutulakos and Seitz [65].
(a) Six out of one hundred photographs of a hand sequence. (b) Reconstruction of a hand.

reduced to 2D ray intersection on the epiploar plane. The number of rays being

sampled is also limited to the number of pixels of the desired image, resulting

in a view-dependent visual hull representation. The system yields real-time per-

formance for 3D shape reconstruction and visualization with a calibrated multi-

camera setup.

The limitation of shape from silhouette method is obvious. First, the visual hull

is not guaranteed to be the same as the original object, since the concave surface

regions can never be distinguished using silhouette information alone. And second,

in practice, the visual hull is approximately constructed using only a finite number

of views. The number of calibrated views will limit the level of reconstruction

accuracy.

Instead of carving empty space, in Cipolla and Blake [29], the authors recover a

parameterised surface directly from deforming silhouettes (also know as shape from

contour). The mathematics of perspective projection and differential geometry is

used to analysis deforming silhouettes (apparent contour) of a curved surface. As-

suming view motion is known, the local surface curvature along the corresponding

contour generator is computed using a spatialtemporal parameterisation of image-

curve motion. The approach achieve real-time reconstruction of 3D surface, how-

ever, the assumption of known view motion and parameterisable surface is the
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fundamental limitation.

Another set of reconstruction methods that are based on the idea of removing

spacial regions where the object ‘is not’ is the Space Carving method (Kutulakos

and Seitz [65], Broadhurst [19]). Given a set of input image, the goal of the Space

Carving method is to find the photo-consistent shape (i.e. the shape that reproduces

all input images). In the visual hull method, this photo consistency constraint is

only exploited in the background region. In Kutulakos and Seitz [65], the authors

also explore the photo consistency constraints from non-background pixels using

the Lambertian radiance model in the scene. The resulting reconstruction is a

subset of visual hull (also called the photo hull), but can contain concavities. In

the Space Carving framework, space is also represented by an array of voxels. At

each iteration, the algorithm selects a voxel and projects it into all the image where

it is visible. It then ask the question: could this pixel be part of the objects? This

question is tested by tracking the RGB variance of the corresponding pixels in all

images. If the the variance is higher than a threshold, then the voxel is removed.

The algorithm repeats until it has exposed the 3D shape of the scene. An example

of the Space Carving algorithm is shown in Fig. 2.9.

A crucial part of the Space Carving algorithm is the consistency criteria, which

is the mechanism that decides whether a voxel should be kept or discarded. Orig-

inally, a single threshold of the variance of RGB value is used, leading to incorrect

removal of voxels in presence of image noise. In Broadhurst [19], the authors in-

troduced a probabilistic framework for Space Carving, which does not rely on any

global threshold parameter. Instead, the probability of a voxel being visible in

each view is first computed then marginalized into a single per-voxel probability

of visibility, which is used for the visualization of the model using the α-test. This

probabilistic framework does not carve holes in the model.

The limitation of Space Carving-based methods is that it requires a accurately
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Figure 2.10: Structure from motion (SfM)-based model acquisition pipeline

multi-view setup, also, the photo-consistency assumption does not hold for non-

Lambertian objects.

2.3.2 Structure from motion-based methods

Methods in the Shape from X category either works with a single frame input, or

requires a calibrated multi-view setup to reconstruct the 3D shape. The structure

from motion (SfM) -based methods allows the reconstruction of 3D shape with a

single moving camera. The camera poses and the 3D shape are simultaneously

recovered within a single pipeline. Examples of SfM-based method that provides

an end-to-end solution to 3D model acquisition includes, among others, Beardsley

et al. [10], Fizgibbon and Zisserman [42] and Pollefeys et al. [103]. Such SfM

methods generally follow a similar framework (shown in Fig. 2.10), differences

between methods are within each module.

Given a sequence of image as input, a set of feature points is first detected

on each frame. Rotation and scale invariant descriptors like SIFT (Lowe [80]) and

FAST (Rosten and Drummond [119]) are the most commonly used feature descrip-

tors. Correspondences between the detected features in different frames are then

matched based on the descriptor. The second task is to recover the motion of the

camera and the structure of the scene. The motion information includes the 6 Dof
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pose of the camera, and the intrinsic parameter of the camera. The structure infor-

mation is represented by the 3D location of the matched features. Given the feature

correspondences between multiple views, the geometric constraints (i.e. the fun-

damental matrix or focal tensors) among views can be established using multiple

view geometry (Hartley and Zisserman [49]). The projection matrices that repre-

sented the motion information then can be recovered. Finally, 3D coordinates of

features, i.e. structure information, can be computed via triangulation. The recon-

struction process usually includes local updates (feature matching and structure

reconstruction between local frames), which can lead to inconsistency and accu-

mulated errors in the global result. A global bundle adjustment (Triggs et al. [135])

optimization step is then performed to produce a globally consistent result.

The structure created from SfM is very discrete and sparse, not enough for

the purpose of visualization or more specifically, the purpose of model-based 3D

tracking. Multiple view stereo method is used for obtaining a dense 3D point

cloud as the model representation. Generally, dense stereo methods follows two

steps: rectification and stereo mapping. The first exploits the epipolar constraint to

prepare the data for the second one by aligning a corresponding pair of epipolar

lines alone the same scan line of image thus all corresponding points will have the

same y-coordinates in two images. This makes the second task, roughly search

and match over the whole image faster. Stereo mapping is the task of establishing

a dense matching between points of different calibration views, then the matched

points are triangulated into model coordinates to produce the final dense point

cloud model. There is a vast literature of multi-view stereo methods, however, it is

beyond the scope of this thesis, a review of various dense stereo methods can be

found in Seitz et al. [126].

Depending on the final 3D model representation, the whole reconstruction

pipeline may include a 3D modeling step to produce a textured mesh model. Al-

though the SfM-based method provides a complete end-to-end solution for 3D
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Figure 2.11: Example result of SfM-based reconstruction. Image from Xiao [146]

model acquisition, the limitation is the speed. The feature detection and matching

and the SfM step can achieve real-time performance, and they are widely used in

Simultaneous Localization And Mapping (SLAM) systems. However, in order to

obtain accurate depth map for dense reconstruction, the dense stereo step can only

use offline processing. Furthermore, in the SfM step, in order to recover the camera

motion, a stationary scene is required. This constraint makes the method not suit-

able for the purpose of construction moving objects in uncontrolled environment.

2.4 Multi-object tracking

Multi-object tracking in 2D video has been well studied over the last decades. Clas-

sical approaches to multi-target tracking either assume point-like targets and track

their 2D image locations or represent targets as 2D regions of interest (RoI) and

track the 2D shapes or 4-DoF poses of bounding boxes. The core problem in multi-

object tracking is the data association problem when multiple objects move close

together. When objects have distinctive appearances, instantiating several single-

body tracking may solve the tracking problem. However, when the targets are

“identical”, in the sense that the same model is used to describe each target, the

task become much more challenging.

In early work, Fortmann et al. [43] proposed joint probabilistic data association
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filtering (JPDAF) for associating data with targets in a cluttered multi-target envi-

ronment. Joint posterior association probabilities are computed for multiple targets

in Poisson clutter. The method is able to track heavily interfering targets. However,

JPDAF fails when the data models are non-linear and non-Gaussian. Sampling-

based method or Monte Carlo-based methods were introduced to tackle this. The

distribution over the state space is represented as a set of discrete samples, which

are easy to implement and can model complex non-linearity. In Schulz et al. [125],

JPDAF was implemented as a particle filter for the application of tracking people

from a mobile robot platform using 2D radar data. Occlusion between objects is

explicitly handled using an “occlusion map” that contains, for each position in the

surrounding of the robot, the probability that the corresponding position is not vis-

ible during data association. In MacCormick and Blake [81], the author introduced

“partitioned sampling”, a method of using particle filter with multiple objects.This

means dividing the state space into several partitions followed by an appropriate

weighted resampling operation. The method significantly mitigates the curse of di-

mensionality, and occlusion is handled using an exclusion principle that prevents

a single piece of image data independently contributing to similar hypotheses for

different targets. Khan et al. [55] use a Markov Chain Monte Carlo (MCMC) based

particle filter to incorporate motion priors over target interactions. The coalescence

of multiple trackers is handled by instantiating repulsion forces between trackers

when their object hypotheses get close.

The well established Bayesian filtering framework has not been used for real-

time full DoF tracking of multiple objects in 3D. We believe the reasons are two-

fold. First, handling the high dimensionality of state space in multi-object tracking

is non-trivial. And second, the simplified model assumptions of points, bounding

boxes or region of interest is insufficient for the representation of full DoF poses

in 3D. We will further discuss recent work on real-time 3D multi-object tracking in

Chapter 5.



3

A Generic Probabilistic Framework for
Model Fitting with Depth Data

This chapter presents a probabilistic model for real-time model-based tracking of

3D objects, which leads to a unified energy minimization framework for generic

model fitting problems with a depth cameras. 3D level-set embedding functions

are used to represent object models implicitly and a novel 3D chamfer distance

based energy function is used for matching. The energy function is minimized

by adjusting the back-projection from image domain to object coordinates, which

can be parametrised differently according to specific applications. The proposed

energy function is fully variational and probabilistic, and thus can be efficiently

solved by second-order gradient-based optimization methods. The approach is

applied to three tasks, namely real-time 3D tracking, camera calibration and 3D

point cloud modelling with primitive shapes. An earlier version of this work

was published by Ren and Reid [114]
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Figure 3.1: Illustration of the concept of control object tracking. Image (a) shows the orig-
inal colour image, (b) shows the depth image with tracking result overlaid, (c) visualizes a
sword on the colour image with the recovered pose of the control object.

3.1 Introduction

The first vision module required for the system for rehabilitation is a method for

model-based 3D tracking that can recover the 6-DoF pose of a known “well cap-

tured object” (also known as control object) in real-time. The patient is expected

to move the control object in front of a RGB-D camera as instructed by the re-

habilitation game. Tracking the control object must enable not only the graphical

visualization of an interesting virtual object in the rehabilitation game, but also per-

mit accurate measurement of how well the patient performs in the rehabilitation

exercise. An example of the control object is shown in Fig. 3.1 (a) and the visu-

alization of the virtual object as a sword overlaid given the actually colour image

is shown in Fig. 3.1 (c). In order to solve this 3D tracking problem, we develop a

probabilistic model that allows the optimal 6-DoF pose to be found by maximizing

the posterior probability of the pose given the depth image input. As we show, the

resulting energy function can be applied to other tasks, including camera calibra-

tion and point cloud modeling with primitive shapes. The method run effectively

in real time on a CPU but using a further GPU implementation it is able to handle

larger object and/or very dense depth maps.

Our method is a model-based approach in which the 3D shape of the object

is represented implicitly as the zero-level set of a signed distance function (SDF)
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computed in the voxelized space around the object. As a natural extension of the

2D Chamfer distance matching method [133], Fitzgibbon [41] showed that SDFs

are an effective alternative to the iterative closest point (ICP) algorithm [12] for fast

and robust 2D to 2D and 3D to 3D point cloud registration. The most significant

benefit is that the SDF-based formulations do not require explicit point to point

correspondences, and further, by placing a upper limit on the per-point signed dis-

tance, the cost function is made intrinsically robust without explicit segmentation.

In practice, as sketched in Fig. 3.2, we discretize 3D locations into a number of

voxels surrounding the object. Voxel locations with positive signed distances map

to the inside locations of the object and vice versa, and the surface is defined by the

zero-level. Unlike other hypothesis-and-test or sampling based methods (e.g. Ueda

[63], Oikonomidis et al. [52], Choi and Christensen [28] and Wuthrich et al. [145]),

we optimize a fully probabilistic and variational energy function without the need

to establish any explicit point correspondence between the 3D model and the ob-

servation. We take advantage of the gradients of the SDF to guide the search for the

optimal pose, so the optimization problem can be efficiently solved by second-order

gradient-based methods like Levenberg-Marquardt (LM) [73, 84]. And because a

back-projection scheme is used, rather than ‘rendering’ the object into observation

domain, no z-buffering or depth ordering is required for the energy function eval-

uation, making the method inherently more suitable for the parallelization on a

GPU.

The remainder of this chapter is structured as follows: Section 3.2 reviews sev-

eral closely related works in recent five years, then in Section 3.3, we establish the

geometry involved and our notational conventions. The core of the chapter is in

Section 3.4 where we develop the graphical model and the mathematical founda-

tions. Section 3.5∼3.8 specialize the approach to three applications in detail and

give both qualitative and quantitative results. We further discuss the implementa-

tion and performance of our method in 3.9 and draw conclusions in Section 3.10.
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Figure 3.2: (Left) An object is defined in a voxelized cube. (Right) Its SDF as embedding
function is also defined in object coordinates with the same voxelization. We use 200×
200× 200 voxels in this work.

3.2 Related work

Early work that uses sparse image features or image regions for 3D tracking has

been reviewed in Chapter 2. Here we review some state-of-the-art dense 3D track-

ing methods using color imagery or RGB-D imagery as input. Recent approaches

to real-time tracking of 3D objects can be categorized into two major categories:

gradient-based methods and sampling-based methods.

Gradient-based methods, the category our method belongs to, involve the min-

imization of an objective function, which is characterized by having partial deriva-

tives with respect to the pose parameters. These approaches are able to take the

advantage of the well established optimization techniques to efficiently estimate

the optimal pose. A common algorithm deployed by gradient-based methods is

Iterative Closest Point (ICP) [12]. In the ICP algorithm, point-to-point correspon-

dences between the model and the observed point cloud are first established, then

the relative transformation between the model and the point cloud is iteratively

refined by minimizing the sum of L2 distances between the corresponding point

pairs. In Held et al. [50], the authors input RGB-D imagery from the Kinect sensor

as input data. Rigid 3D objects (3D puppets) are represented by coloured point

clouds and the real-time tracking is accomplished by using the ICP algorithm to
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align the observed point cloud and the model point clouds. The system yield-

s robust tracking in presence of occlusion from hands but it heavily relies on an

appearance-based pre-segmentation phase to remove the ground surface and the

occlusion introduced by the hand.

In the work of Newcombe et al. (KinectFusion) [92], the authors simultane-

ously track and reconstruct a static 3D scene in real-time. The surface of the

reconstructed-and-tracked scene is represented by a Truncated Signed Distance

Function (TSDF). At each frame, ray-casting from the camera centre to the object

frame is used to create a point list from the TSDF. The pose recovery is achieved

also by using ICP to align the model point list with the observed depth image.

However, a requirement when tracking with KinectFusion is that the entire scene

is tracked as a single entity related to the camera. In the context of object track-

ing, this requires a single object to be segmented from the background, which is a

condition that is obviously violated when tracking a moving object with arbitrary

motion in a static scene. Our method differs from the ICP-based methods by using

a full Signed Distance Function (SDF) to represent the 3D objects and directly use

the gradients of the SDF to guide the optimization for pose, without the need to

explicitly establish point correspondences.

In Prisacariu and Reid [106], the authors use a region-based method which does

not require point correspondences neither. The object model is first projected onto

the image domain and a 2D SDF is computed from the silhouette of the projection.

The pose of the 3D object is recovered by evolving the 2D SDF in the image domain

with respect to the pose to maximize the foreground-background discrepancy of

the appearance. Due to the heavy computation of the projection of the 3D object

model, the method can only achieves frame-rate performance with GPU imple-

mentation. Furthermore, the ambiguity of pose when projecting 3D shapes into 2D

image domain is a fundamental limitation of the method.
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Sampling-based methods, on the other hand define an objective function that

describes the discrepancy between the observed visual cues and the expected ones

generated by the pose hypothesis. The objective functions are evaluated by “render-

ing” the object model into the observation domain and computing the differences

between the generated and the observed visual cues. The partial derivatives of

the objective function are either too expensive or not possible to compute, so this

set of methods typically rely on the evaluations of the objective functions at many

positions in the hypothesis space. For example, in Oikonomidis et al. [52] the au-

thor uses Particle Swarm Optimization (PSO) to track an articulated hand, and in

Kyriazis and Argyos [67] the authors use the same PSO technique to track the inter-

action between a hand and an object. Both systems achieve real-time performance

by exploiting the power of GPU, however, the level of accuracy that can be achieved

by PSO is less thoroughly studied and theoretically justified. Other works in this

category mostly use the well-studied particle filter to solve the tracking problem

and differ only in the types of visual feature that is used. In Ueda [137], the ob-

jective function describes the differences between the rendered and the observed

depth map and in Wuthrich et al. [145], the authors also model the per-pixel occlu-

sion label at the same time towards more robust tracking in presence of occlusion.

In Azad et al. [100], 2D image edges and the 2D edges of the rendered model are

matched against each other. In Choi and Christensen [27] both 2D edges and 2D

image key-points are used, and in their more recent work Choi and Christensen

[28], the authors use RGB-D imagery input and added photometric, 3D edges and

3D surface normals into the likelihood function of each particle state. All the above

methods can achieve real-time performance with GPU implementations, but due to

the computationally expensive nature of the particle filter, they are limited by the

number of particles that can be deployed for real-time performance. In contrast,

our method relies on highly efficient representation and optimization, which leads

to real-time performance on a single CPU.
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𝑋𝑜 𝑋𝑐

Figure 3.3: Illustration of the scene geometry, from right to left: A known object in the
depth image, the points in depth camera coordinates and wrapped around the object sur-
face in object coordinates during tracking.

3.3 Image and scene geometry

The basic scene geometry is illustrated in Fig. 3.3. Each pixel location (x, y) in the

image Ωd of a depth camera holds the depth value Z(x, y) of the associated 3D

scene point Xc = (X, Y, Z)⊤ referred to Cartesian coordinates centred on the depth

camera’s optical centre. The projection is perspective, giving the image position

x = (x, y, 1)⊤ as

x = Z−1K[I|0]

Xc

1

 . (3.1)

Knowledge of the intrinsic calibration matrix K3×3 of the camera allows the recovery

of the scene as

Xc = K−1Z x . (3.2)

Knowledge of the extrinsic calibration between the depth and colour cameras —

in the form (P3×3, q3×1) defined later in Section 3.5 — allows the corresponding

image point x′ = (x′, y′, 1)⊤ to be found in the colour image Ωc as

λx′ = PZx + q , (3.3)

where λ is a per-point scale. The colour 3-vector can then be copied to the depth

image as c(x, y)← c(x′, y′). The pixel at x in the combined image Ω then provides
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(Z, c
⊤
).

A pixel is the projection of a scene point that is either part of the background or

on the surface of a specific object. An object’s pose relative to the depth camera is

represented by a 6-vector p=(T
⊤

, r
⊤
)
⊤

comprising of three translation parameters

T=(tx, ty, tz)
⊤

and three Modified Rodrigues Parameters (MRP) [128] as rotation

r=(r1, r2, r3)
⊤

. The Euclidean transformation from the object coordinates to the

camera coordinates T, as a function of the pose p is defined as

T(p) =

 R T

0
⊤

1

 . (3.4)

Here, R is the rotation matrix constructed from MRP r

R =
1

(1− σr)2


4r2

1 − 4r2
2 − 4r2

3 + ω2
r 8r1r2 − 4r3ωr 8r1r3 + 4r2ωr

8r1r2 − 4r3ωr 4r2
2 − 4r2

1 − 4r2
3 + ω2

r 8r2r3 + 4r1ωr

8r1r3 + 4r2ωr 8r2r3 + 4r1ωr 4r2
3 − 4r2

1 − 4r2
2 + ω2

r

 ,

(3.5)

where

σr = r2
1 + r2

2 + r2
3 , ωr = 1− σr . (3.6)

The Euclidean transformation Tco relating points in the object and camera frames

follows Xc

1

 = Tco

Xo

1

 . (3.7)

In our formulation, we instead recover the pose using the back-projection matrix

Toc, which is simply the inverse of Toc

Xo

1

 = Toc(p)

Xc

1

 . (3.8)
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𝑝Φ Ω𝑑

Figure 3.4: The graphical model for our model-fitting framework

3.4 Graphical model

Fig. 3.4 shows the proposed graphical model [60] from our model-fitting framework

with depth data. The current depth image Ωd depends on the current object pose

p and the 3D shape Φ. We assume no motion model and estimate the pose of the

object in each frame independently by maximizing the posterior probability of the

pose given the current depth image and 3D shape, P(p|Φ, Ωd). Following Bayes’

rule, the posterior is proportional to the likelihood of the depth image and the prior

of the pose

P(p|Φ, Ωd) =
P(Ωd|Φ, p)P(p)

P(Ωd|Φ)
. (3.9)

Assuming a single 3D object can have arbitrary 6-DoF pose we take the pose prior

term P(p|Φ) as uniform, and drop it. Assuming pixel-wise independence, the

likelihood of depth image P(Ωd|Φ, p) can be decomposed into the product of all

per-pixel depth likelihoods

P(Ωd|Φ, p) = ∏
xi∈Ωd

P(Z(xi)|Φ, p) , (3.10)

where Z(xi) is the depth value at 2D depth image location xi. For each 2D depth

image location [xi, yi] the per-pixel depth Zi is independently and randomly drawn

from the likelihood distribution. The per-pixel likelihood P(Z(xi)|Φ, p) is

P(Z(xi)|Φ, p) =
exp{Φ(Xo

i )/σ}
σ(exp{Φ(Xo

i )/σ}+ 1)2 , (3.11)

as based on the assumption that a depth value is more likely to be generated if the

corresponding pixel can be back-projected near the surface (i.e. the zero level-set of
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Figure 3.5: The form of the per-pixel likelihood function P(Z(xi)|Φ, p)

the SDF) of the 3D shape in object coordinates. The likelihood is a robust function

which has large gradients around the zero level of SDF and small gradients when

Φ(Xo
i ) is further away from the zero level-set. Here, Xo

i is the back-projection of xi

given the current pose following Eqn. 3.2 and Eqn. 3.8 and σ determines the width

of the basin of attraction. This likelihood function is plotted in Fig. 3.5. The energy

function is written as a sum of log-likelihoods over all pixels

E = ∑
xi∈Ωd

log
{

exp{Φ(Xo
i )/σ}

σ(exp{Φ(Xo
i )/σ}+ 1)2

}
. (3.12)

As mentioned earlier, the optimization of the energy function of the form in E-

qn. 3.12 can be achieved by using sampling methods. In our formulation, sampling

in a high dimensional pose space is avoided by using second-order optimization.

The energy function is parameterized in terms of a pose change p∗ = (T∗⊤, R∗⊤)
⊤

from the current pose, and its gradient found as

∂E
∂p∗

= ∑
xi∈Ωd

{[
1

PZi

∂PZi

∂Φ
∂Φ
∂Xo

]
∂Xo

∂p∗

}
, (3.13)
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where PZi = P(Z(xi)|Φ, p). The term in brackets in Eqn. 3.13, ∂E
Xo , are pre-computable

for all voxel location

∂PZi

∂ Φ
=

exp{Φ/σ}
σ2 (exp{Φ/σ}+ 1)2 −

2 exp{2Φ/σ}
σ2 (exp{Φ/σ}+ 1)3 , (3.14)

and

∂ Φ
∂Xo =

[
∂Φ
∂X

∂Φ
∂Y

∂Φ
∂Z

]
. (3.15)

The derivatives of the SDF
(

∂Φ
∂X

∂Φ
∂Y

∂Φ
∂Z

)
are computed trivially, using central finite

differences. The incremental 3D transformation of the 3D point Xo follows

Xo(p, p∗) = R∗Xo(p) + T∗ . (3.16)

At each iteration, the partial derivatives of the 3D points Xo = (Xo, Yo, Zo)⊤ with

respect to the pose update p∗ =
(

t∗x, t∗y, t∗z , r∗1 , r∗2 , r∗3
)⊤

are computed at identity (i.e.

t∗x = t∗y = t∗z = 0, r∗1 = r∗2 = r∗3 = 0)

∂Xo

∂ tx
=


1

0

0

 ∂Xo

∂ ty
=


0

1

0

 ∂Xo

∂ tz
=


0

0

1


∂Xo

∂ r1
=


0

−4Zo

4Yo

 ∂Xo

∂ r2
=


4Zo

0

−4Xo

 ∂Xo

∂ r3
=


−4Yo

4Xo

0

 . (3.17)

Using the derivatives, Levenberg-Marquardt iterations are used to optimize for the

pose update p∗

p∗ =
{
−
[
J⊤J+ λdiag

[
J⊤J

]]−1 ∂E
∂p∗

}⊤
(3.18)
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Figure 3.6: Typical process of convergence for one frame. The top row shows the back-
projected points and the SDF in the object coordinates. The bottom row visualizes the
object outline on depth image with corresponding poses. Whole sequence see Video B.1 in
Appendix B.

where J is the Jacobian matrix of the energy function, and λ is the non-negative

LM damping factor adjusted at each iteration. Taking the solution vector p∗ to an

element in SE(3) using Eqn. 3.4, we compose the computed incremental transfor-

mation at iteration n + 1 onto the previously estimated transformation as

T̃n+1 ← T∗(p∗)T̃n , for n = 1 to N , (3.19)

and the estimated object pose Toc therefore results by composing the final incre-

mental transformation T̃N onto the previous pose:

Toct+1 ← T̃NToct . (3.20)

Fig. 3.6 illustrates the output from the tracking process. Intuitively at each iteration,

the gradients of the energy functions guide the back-projected points towards the

zero-level of the SDF. When the optimization converges, the back-projected points

lies on the surface of the object.
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Figure 3.7: Film strips from a whole tracking sequence. The top row shows the observed
depth with object overlay, while we show the tracking result with graphical visualization
with a virtual sword on the lower row. Whole sequence see Video B.1 in Appendix B.

3.5 Application I: 3D pose tracking

In this section, the performance of our method for 3D tracking is evaluated using

qualitative and quantitative measurements. Later sections will expend the applica-

tion to camera calibration and 3D point cloud modeling.

We first demonstrate the qualitative performance of our method for 3D tracking.

Fig. 3.7 shows sample frames from a sequence that we use to track the known

control object. The depth image overlaid in blue by the projection of the tracking

result is shown in the top row and a virtual sword is visualized on the colour image

in the bottom row. As shown the control object is tracked over a large number of

frames. Challenging example is shown in Fig. 3.8. In this sequence, we use our

method to track the same control object in the presence of heavy occlusion and

missing data. The top row shows the original input depth image and the bottom

row shows the tracking result. Even when more than half of the object is occluded

by hand, the tracker does not lose track. Our energy function is naturally robust to

occlusion and missing data because our method back projects the depth point on

the image into object coordinate and use the gradient of the level-set embedding

function to guide the search for the best pose. In this way, as long as the back-
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Figure 3.8: Film strips showing our algorithm successfully tracking a real rigid object
through heavy occlusion. The upper row shows the observed depth sequence, while we
show the tracking result on the lower row. Whole sequence see Video B.1 in Appendix B.

projected points encode sufficient information of the location of the object, our

method can converge correctly.

To evaluate the performance of 3D rigid object tracker without a general ground

truth, we use a known 3D model to generate synthetic depth sequences and run our

tracker on the sequences to evaluate the accuracy and robustness of our method

for tracking 3D rigid objects. The object for generating the sequence is shown in

Fig. 3.9 (a) and sample depth frames are shown in Fig. 3.9 (b). We use a simplified

Gaussian noise model

Zo = Zr + W and W ∼ 1
σ
√

2π
exp{−W2

2σ2}, (3.21)

where Zr is the depth obtained by projecting the 3D model into image domain, W

is the added zero-mean Gaussian noise and Zo is the generated depth in the final

synthetic frame. Synthetic depth sequences with 4 levels of zero-mean Gaussian

noise, ranging from σ = 0 mm to σ =
√

10 mm were generated for this experiment.

We show the result in Fig. 3.10. The tracking trajectory plotted in the left column

and the errors in translation and rotation are plotted in the right column. The figure

shows that even with the highest noise, our tracker can still recover the 6-Dof pose
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Figure 3.9: (a) Shows the virtual object that we used to generate the synthetic sequence
and (b) shows sample frames from our generated synthetic sequence.

without losing track. The tracking errors with low noise (σ = 1 mm) is less than

within 1 mm in translation and 2◦ in rotation.

3.6 Application II: Simultaneous tracking and intrinsic

calibration

The Kinect sensor doest not provide the calibration parameters for the depth cam-

era, however, for the accurate 3D tracking, the intrinsic matrix of the camera is

required. In this section, we show how to use the same energy function to simul-

taneously track an known object while calibrating the intrinsic parameters of the

depth camera.

Assuming zero skew, the intrinsic matrix has the usual form

K =


fx 0 cx

0 fy cy

0 0 1

 , (3.22)

and to recover the focal lengths and the principal points, the optimization’s param-

eter vector is lengthened to π=(p∗⊤, k⊤)⊤ with k=( fx, fy, cx, cy)⊤, and tracking

and calibration are carried out simultaneously. The cost and gradient have the

same form as Eqns. 3.12 and 3.13, but with the six parameters p∗ replaced by the

10 parameters π. Again Levenberg-Marquardt is deployed as the optimizer.
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Figure 3.10: Quantitative evaluation of the accuracy and robustness of our method for
tracking 3D rigid object on synthetic data, with respect to different level of added Gaussian
noise. Left column shows the tracking trajectories and the right column shows the pose
error.
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Figure 3.11: (a) The calibration object. (b) Film strips showing an example sequence
that we used for simultaneous calibration and tracking. Whole sequence see Video B.1 in
Appendix B.

Because each video frame m provides an independent optimal calibration given

the current pose of the calibration object, the estimates can be combined as

k̂ = arg min
k

M

∑
m=1

[k̄− km]
⊤Σ−1

m [k̄− km] (3.23)

where the covariance Σm at frame m is approximated by the inverse Hessian.

Fig. 3.11(a) shows the calibration object itself and Fig. 3.11(b) shows sample frames

of it being moved and traced during simultaneous calibration.

Test against synthetic data: To test against ground truth in the face of noise we

again use synthetic data. Fig. 3.12 shows the convergence of the overall estimate

k̂ of the intrinsic parameters as more frames are added, using synthetic data with

known ground truth. In low noise (σ=1 mm), the method recovers the intrinsic

parameters accurately ( fx, fy to ± 1% and cx, cy to ± 2 pixels) from less than 200

frames (≈7 s of data), while in higher noise, the aspect ratio ( fx/ fy) are still accu-

rate, but the error in principle point increases and the focal length is biased to a

low value. In practice, the actual Kinect sensor are in the low noise regime.

Test against real data: We have also tested our method on real data. We ini-

tialize the tracking with an initial guess of the intrinsics ( fx = 600, fy = 600, cx =

300, cy = 200), then track the object (as shown in Fig. 3.11) for 500 frames to esti-

mate the intrinsic matrix. Reprojection error is the most commonly used criterion

to evaluate the intrinsic calibration, however, without point correspondences in
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Figure 3.12: Quantitative evaluation of our method for calibration on synthetic data, with
respect to different level of noise, all intrinsic parameters are in pixels.

Image Coordinates

Camera Coordinates

𝐾−1

Figure 3.13: Illustration of the criteria for the evaluation of intrinsic parameters: giv-
en a depth image of three orthogonal planes, we unproject all depth pixels from image
coordinate to camera coordinates, then we compute the angle between the norms of the
three orthogonal planes as criteria. If the intrinsic matrix is correctly recovered, the angle
between the tree norm should all be 90◦.
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Method θ1 θ2 θ3 Overall Err
This method 90.18 91.61 89.69 2.10
Zhang [149] 90.87 92.19 87.96 5.10

D. Herrera et al. [22] 91.61 89.22 90.35 2.75
Initial guess 88.40 87.96 94.18 7.81

Table 3.1: Quantitative evaluation of the performance of our method for calibration on real
data: three orthogonal planes are unprojected into camera coordinates with the recovered
intrinsic matrix, the angles (in degree) between the norms of unprojected orthogonal planes
are shown in the table as criteria.For a perfectly recovered intrinsic matrix, θ1=θ2=θ3=90
is expected.

the depth image, we can not use this criteria. Thus we use similar criteria as in

the Kinect calibration toolbox (Herrera et al. [22]), which is based on orthogonal

planes, to evaluate the quality of our intrinsic estimation. As illustrated in Fig. 3.13,

the calibrated depth camera is used to record the three relative orthogonal planes,

then we unproject all depth pixels into the camera coordinates and compute the

angle between the normals of the three planes. If the intrinsic matrix k is correct,

the angles between the three normals should all be 90◦.

With this criterion, Table 3.1 compares our calibration result with those from

the standard checkerboard calibration method with non-linear refinement Zhang

[149] and the state-of-the-art of Herrera et al.. [22] (Kinect calibration toolbox). Al-

so shown is the result from the initial guessed intrinsic matrix in the last row. The

present method shows the best result for recovering orthogonal plane normals and

is also easier to use as Herrera et al. [22] requires the user to define the bound-

ary of the calibration plane at all frames. Instead, given a known object model,

our method can calibrate the depth sensor with one-click initialization on the first

frame. No point correspondences, either by manual clicking or automatic corner

detection is required. The disadvantage of our method compared to Herrera et

al. [22] is that, our method does not calibrate the 6-DoF transformation between

the depth camera and the colour camera. A separate method for calibration of

the extrinsic parameter of the two cameras is given in Section 3.7. Note that, for
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Zhang [149], we attached a checkerboard pattern on a piece of glass then cut off

the white area, so that we can do automatic corner detection in depth image. But

since sub-pixel accuracy corner detection in the noisy depth image is not possible,

the performance of Zhang [149] is limited.

3.7 Application III: Extrinsic calibration of the Kinect

sensor

The Kinect sensor has both a colour camera and a depth camera. Although the

tracking method developed in previous section uses only depth information, later

works will use both the depth and the colour camera which are not in the same

coordinate system. Being able to map the colour pixels onto the depth image will

provide that important colour information. The transfer of values from the colour

to the depth camera is achieved by tracking of a “point object” visually in both

cameras. Note that although the intrinsic matrix K′ of the colour camera and the

rotation and translation R′3×3 and t3×1 between the cameras appear in the method’s

explanation, they are not recovered explicitly.

For perspective projection in the RGB camera a scene point Xc in the depth

camera coordinates is imaged at

λx′ = K′
[
R′Xc + t

]
(3.24)

where λ is a per-point scale factor. Using Eqn. (3.2) we have

λx′ = K′R′K−1Zx + K′t = PZx + q . (3.25)

As illustrated in Fig. 3.14, a wand carrying a characteristically coloured sphere
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Figure 3.14: Extrinsic calibration: (a,b,c) the colour image and spherical wand detected
and fitted in it; (d,e,f) the depth image and with object detected and fitted.

is tracked in both cameras to give a set of x↔ x′ correspondences. For tracking in

the colour camera, the ball is detected using a learnt colour model, and a Hough

transform applied to the resulting ball/not-ball binary mask to determine the cen-

ter of the ball. For tracking the sphere in the depth camera, we use the 3D level-set

method described in Section 3.5 but instead of tracking with full 6-DoF pose, we

only recover the 3-DoF translation in order to recover the sphere’s 3D centre .

With M pairs of corresponding points, P and q are found by minimizing the

2-norm of the reprojection error

[P̂, q̂] = arg min
P,q

M

∑
m=1
∥x′m − x̂′m(P, q, xm, Zm)∥2 , (3.26)

where the x′ and x̂′ here are just 2-vectors.
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Figure 3.15: Illustration of the ground plane removal step: a) fitting a plane patch to any
part of the ground plane. b) Extend the plane patch. c) Ground plane is segmented out by
removing all depth pixels that are close to the extended plane patch.

3.8 Application IV: Point cloud modeling

In this application, the energy function is used to model a point cloud with adap-

tive primitive shapes (e.g. spheres, cylinders and cones) with unknown size. Given

the intrinsic parameters and the type of object, the energy function is able to simul-

taneously recover the pose and the size of the object in the point cloud. The scale of

the object model is defined along x, y, z axis in the object frame, the transformation

from object coordinates to camera coordinates in Eqn. 3.8 is:

Xc

1

 = Tco(p) S

Xo

1

 S =


sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

 , (3.27)

where S is the scaling matrix. Then the 3D point Xo is a function of both the 3D

pose p and the scaling parameters s = (sx, sy, sz)⊤, very similar to the formulation

in Section 3.6, the optimization’s parameter vector is lengthened to π = (s
⊤

, p
⊤
)⊤.

At each frame, the size of object is independently estimated, so we use the same

weighted least square as in Section 3.6 to estimate the final scale of the object.

Qualitative results are shown in Figs. 3.15 and 3.16. Before running the point

cloud modeling step, we first remove the ground plane from the observed depth
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Figure 3.16: Illustration of the model adaptation step: a) primitive models are initialized
with arbitrary size; b) using our rigid 3D object tracking energy function, models are fitted
into point cloud as rigid objects; c) the size and pose of the object in the point cloud is
simultaneously tracked and estimated. Whole sequence see Video B.1 in Appendix B.

image. We do this by fitting a plain patch to any part of the ground plane using our

3D rigid object tracker. Then we extend the plane to cover the whole depth image,

and compute the discrepancy between the extended plane and the depth image on

each pixel. All pixels that have small discrepancies are classified as ground plane

and removed. Fig. 3.15 illustrates the ground plane removal process.

After removing the ground plane, we initialize primitive models with arbitrary

size, then run the rigid 3D object tracker to align the primitives to the point cloud.

The primitive models will of course not fit the point cloud perfectly since the size

is arbitrary, but the tracking result is now used as the initialization for the shape

adaptation step. In the shape adaptation step we used the energy function param-

eterized by the joint parameter π to simultaneously solve for the size and position

of the primitive models. For this application, we only show qualitative results in

Fig. 3.16.

3.9 Implementation and performance analysis

The whole 3D pose tracking algorithm is listed in Table 3.2, and now we comment

on a number of implementation details and analyse the computational requirement

of our method. We use 640 × 480 depth images and 640 × 480 RGB images from
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Preprocessing:
• Compute per-voxel partial derivatives ∂E

∂Xo in a derivative volume.

Runtime:
• Project all depth pixels x into object coordinates as Xo with previous pose
Toct .
• Evaluate energy function E using Eqn. 3.12.
• For each back-projected 3D points Xo:
◦ Find the partial derivative ∂E

∂Xo in the precomputed derivative volume.
◦ Compute the partial derivative ∂Xo

∂p .
• Compute the Jacobian J and J⊤J.
• Initialize the LM damping parameter λ = 100.
• Initialize the overall estimated change in pose T̃0 = I.
• While λ < 10e6
◦ Compute incremental change in pose p∗ using Eqn. 3.18.
◦ Apply the pose change to the back-projected points Xo

tmp ← T∗(p∗)Xo

◦ Evaluate energy function Etmp with the updated points Xo
tmp.

◦ If Etmp > E
⋆ Accept the pose change: T̃n+1 ← T∗(p∗)T̃n, Xo ← Xo

tmp, E ← Etmp.
⋆ Decrease λ by a magnitude: λ← λ/10.

else
⋆Reject the pose change.
⋆ Increase λ by a magnitude: λ← λ× 10.

• Compose the current pose from previous pose Toct+1 ← T̃nToct .

Table 3.2: Pseudo code for the proposed model-fitting algorithm for one frame, steps with
red marker (• or ◦) can be implemented in parallel fashion on the GPU.
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the Kinect sensor as input, 200 × 200 × 200 voxel cubes are used to hold the object’s

SDF. Using an Intel Core-i7 3.4 GHz CPU, the proposed algorithm can run at rate in

excess of 100 Hz when tracking the control object shown in Fig. 3.7, well in excess

of the 30 Hz frame rate requirements. Most of the tasks involved operate per-pixel

so when dealing with dense depth map or bigger objects, significant performance

gain can be achieved by exploiting the high degree of parallelism on a GPU. We

use the NVIDIA CUDA 1 framework to implement the approach on GPU, detailed

introduction to GPU computing and the NVIDA CUDA framework is described

in Appendix A. In Table 3.2, the steps that can be parallelized on GPU have been

marked with red dots • or red circle◦ .

When tracking relatively small objects that occupy only several thousand pixels

in the image domain, the GPU version is slower than the CPU version. For example

the average processing time per frame lies around 20 ms when tracking an object

with rough size of 200×200×200 mm with a NVIDA Geforce GTX680 GPU. How-

ever, the GPU computational time remains almost constant with the increase in

the number of pixels, unlike the CPU version, whose computational time increase

linearly with respect to the number of pixel.

3.10 Conclusion

In this chapter we have described a novel and quite generic probabilistic frame-

work for 3D model fitting problems involving dense depth data. We use 3D level-

set embedding functions to represent the 3D shapes and a fully probabilistic and

variational cost function is optimized by adjusting the perspective projection ma-

trix. We have developed four applications of the proposed framework: 3D tracking;

intrinsic and extrinsic calibration; and point-cloud modeling. Our algorithm can

1http://docs.nvidia.com/cuda/cuda-c-programming-guide

http://docs.nvidia.com/cuda/cuda-c-programming-guide
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efficiently run on CPU and more importantly, we have also shown that because

of its highly parallel nature, our algorithm is amendable to GPU implementation

to handle larger amount of data. Our method share the benefits of region-based

methods, such as robustness to occlusion and missing data, while still doest not

rely on the computational intensive sampling based solvers.

A few difficulties remain. First, since we assume the whole object region is

generated solely from the 3D model, the tracker is not robust to close-to-surface

occlusion and outlier pixels. The tracking can be lost when the object being tracked

is directly held in the user’s hand. Second, the model-fitting framework requires a

known accurate 3D model to work. Obtaining accurate 3D models for 3D tracking

is a bottleneck for the application of our approach and indeed any model-based

approaches. In Chapter 4, we resolve these two issues by first showing how we can

leverage both the colour and depth information towards more robust tracking then

by developing an approach for simultaneous tracking and 3D reconstruction.



4

STAR3D: Simultaneous Tracking and
Reconstruction of 3D Objects

In this chapter, a probabilistic model is developed for simultaneous 3D track-

ing and reconstruction at video rate, taking as input combined depth and color

imagery. 3D shape is represented implicitly as the the zero-level set of a signed

distance function computed in the voxelized space around the object. Recon-

struction is initialized either from an uninformative prior, or from a generic

class shape if something more is known about the object. The process involves

two phases, one of tracking during which the shape is fixed and the pose updated

by minimizing a robust function of signed distances, the other of reconstruc-

tion where camera poses are fixed and the object shape optimised by evolving

the 3D level set function. Color appearance models of the surface and back-

ground are learned on-line during the process, permitting tracking to continue

through heavy occlusion. Qualitative and quantitative experiments are present-

ed to demonstrate the method’s performance. The method requires no special set

up, other than knowledge of the intrinsic and extrinsic calibrations of the depth

and color cameras. An earlier version of this work has been published by Ren

et al. [113]
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4.1 Introduction

In the stroke rehabilitation system, the tracking of the patient’s feet and the control

object require accurate 3D models, but without access to a predefined CAD model

or similar, the standard acquisition method involves 3D scanning using a precisely

calibrated multi-camera or range sensor system. This is costly and difficult to setup,

and often slow.

In this chapter we introduce a framework for simultaneous tracking and recon-

struction of unknown 3D rigid objects that is simple, fast and effective. The system

is initialized with a simple primitive 3D shape (e.g. a sphere or a cube), then the

3D shape of the object being tracked is reconstructed incrementally on-line. Our

immediate application interest of course is the video-rate reconstruction of shoes,

hand and objects in the context of patients undergoing rehabilitation as discussed

in Chapter 1. Of course a large number of application areas can be considered. For

example, it can allow users to pick any rigid object from their home, scan it and

then use it as a control object to interact with a computer.

The proposed framework comprises of two modules, a tracking module and a

reconstruction module.:

• The tracking module is a direct extension of the depth-only tracker from

Chapter 3. Instead of using only the depth information, we also use the colour

information to model the foreground and background appearance towards

more robust tracking in presence of close-to-surface outliers and occlusions.

• A reconstruction module that extend the 2D level-set evolution approach (by

Cremers [33] and Bibby and Reid [14]) , to 3D and combines it with the idea

of space-carving methods for image-only 3D reconstruction towards a prob-

abilistic 3D reconstruction framework. Prior knowledge of the 3D shape can

also be considered through our probabilistic model in the reconstruction pro-
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cess.

The formulations of both the tracking and the reconstruction modules lead to fully

variational cost functions, which can be very efficiently solved using gradient-based

optimization methods.

The rest of the chapter is structured as follows. We first review recent related

work in Section 4.2, and follow this by a description of the scene geometry and the

basic graphical model in Section 4.3. Then we develop the formulation for single

object tracking and reconstruction with RGB-D data in Sections 4.4 and 4.5. We

describe the implementation of and experimentation with our method in Section

4.6. We draw conclude in Section 4.7.

4.2 Related work

A broader review of the general topic of 3D model acquisition has been given in

Chapter 2 and here we review some specific prior work in real-time dense recon-

struction.

As we have mentioned in Chapter 2, the shape-from-silhouette based methods

provide an end-to-end solution for 3D module acquisition. However, the accuracy

of shape-from-silhouette reconstruction is limited by the accuracy of the silhouette

extraction and the number of views. Recently, improvements have been made to

the method. For example, based on the same idea of carving empty space, in

Michel et al. [88], the authors extend the Visual Hull method with user interaction.

A contacting wand is tracked while moving along the surface of the object being

reconstructed. The 3D shape is reconstructed through carving the empty space

around the object. Although the system yields real-time performance, the setup is

costly and complicated, and thus unsuitable for our purpose of home rehabilitation.



4.3 Scene geometry and basic graphical model 65

The introduction of customizable, frame-rate RGB-D cameras and powerful G-

PUs have made dense 3D reconstruction almost a matter of routine. KinectFusion,

introduced by Newcombe et al. [92] is among the most successful systems. With

a single hand-held Kinect device, KinectFusion can incrementally reconstruct the

surface of the physical world that the camera sees, in real-time. In Newcombe

et al. [93], the authors introduce a similar real-time system, DTAM, which uses

only color image sequence as input. Both KinectFusion and DTAM use a volu-

metric representation for the shape, which places a limit on the size of the object

that these methods can reconstruct. Chen et al. [25] and Niessner [94] have ex-

tended the dense, continuous volumetric representation with scalable and lossless

sparse representations to allow reconstruction at much larger scale. However, as

discussed in the previous section, KinectFusion and DTAM-like depth reconstruc-

tion methods rely heavily on a static scene structure to track the camera, thus it

can not reconstruct small moving objects. Another related recent work is Weiss et

al. [144], the authors use a single, fixed, un-calibrated Kinect to scan a human body

in a home environment. Accurate 3D human shapes are obtained by combining

multiple monocular views of a person moving in front of the sensor. The SCAPE

model (Anguelov et al. [7]) is used to constrain the alignment of the multiple depth

maps from the various views. In Prisacariu et al. [107], the authors use monocular

2D image cues to reconstruct 3D shapes. The reconstruction is constrained by a

learnt low-dimensional 3D shape space. Both Weiss et al. [144] and Prisacariu [107]

are capable of reconstructing 3D objects with a single camera. However, they both

rely heavily on a learnt shape space to constrain the reconstruction. This forces the

reconstructed objects to be within a fixed, prelearnt category, which can not fulfill

our purpose of reconstructing any object as the control object.
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Figure 4.1: Representation of the 3D model Φ, the RGB-D image domain Ω, the surface,
background appearance models P(c|U= f ), P(c|U=b) and the pose T(p).

4.3 Scene geometry and basic graphical model

The scene geometry is shown in Fig. 4.1. Assuming known calibration of both the

depth and color camera (i.e. known K, P and q, as introduced in Chapter 3), we

first reproject the colour image onto the depth image frame and denote the aligned

RGB-D image as a bag-of-pixels Ω =
{
{X i

1, c1}, {X i
2, c2} . . . {X i

NΩ
, cNΩ}

}
where

X i = Z x = (Zx, Zy, Z)
⊤

is a pixel location in homogeneous coordinates with ex-

plicit depth and c is the RGB value of a pixel. The superscript i denotes the image,

to distinguish from the camera coordinates c and the object coordinates o. The ob-

ject shape is represented as a bag-of-voxels Φ =
{
{Xo

1, ϕ1}, {Xo
1, ϕ1} . . . {Xo

NΦ
, ϕNΦ}

}
where Xo is a 3D voxel location in object coordinates and ϕ is the SDF value of Φ

at location Xo. An indicator variable V is introduced for each voxel location, which

can take on value {in, out}. V=in for voxels that belongs to the inside of the object

and V=out otherwise. Theoretically, V can take the value V=on for voxels that

are exactly on the surface of the object, but since the voxel label is only useful for

reconstruction and the number of voxels exactly on the surface can be neglected,

we ignore the label V=on.

The object shape Φ is first transformed into the camera coordinates through the

rigid transformation Tco ∈ SE3, from which it is projected to generate the RGB-D

image. We introduce a co-representation of each RGB-D pixel
{

X i, c, U
}

, where
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Figure 4.2: The basic graphical model for tracking and reconstruction

U is the foreground/background model that takes values U= f or b depending on

whether the pixel belongs to the foreground or to the background. Two appearance

models are used to describe the color statistics of the scene: one for the foreground,

which is generated by the object surface; and one for the background, which is gener-

ated by arbitrary voxels outside the object. These are represented by their likelihoods

P(c|U= f ) and P(c|U=b) respectively. The two appearance models are represented

with normalized RGB color histograms using 16 bins per channel. The histogram

can be initialized either from a detection module or from a user-selected bounding

box on the RGB image, in which the foreground model is built from the interior

of the bounding box and the background from the immediate region outside the

bounding box.

The whole graphical model for tracking and reconstruction is shown in Fig. 4.2.

The left side of the graphical model is in the 3D object domain, the label of each

voxel location V depends on the SDF valude ϕ. The right side is in the 2D image

domain, the 3D pixel location X i depends on the per-pixel foreground/background

model U, the pose p, the 3D voxel location Xo and the voxel label V. The probabil-

ity of the color c on each pixel on depends on the foreground/background model
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U. The joint distribution can therefore be expressed as

P({X i
i,t, ci,t, U}1...NΩ,1...T, p1..T, {Xo

j , Vj, ϕj}1...NΦ) = (4.1)
NΦ

∏
j=1

P(Xo
j )P(ϕj)P(Vj|ϕ)

T

∏
t=1

{
P(pt)

NΩ

∏
i=1

P(X i
i,t|U, {Xo, V}1...NΦ , pt)P(ci,t|U)P(U)

}
.

Full inference leading to a MAP estimate of the shape and poses given the RGBD

image sequence

max
Φ,p1...pT

P(Φ, p1 . . . pT|Ω1 . . . ΩT) (4.2)

appears intractable. Instead, we propose an approximate inference at each new

frame by alternating two phases where (i) pt is optimized while freezing the shape

and (ii) the MAP estimate of the shape Φ is found while freezing the camera poses.

This approximation leads to two simplification of the graphical model for track-

ing and reconstruction, which are shown in Sections 4.4 and 4.5 respectively. In the

whole simultaneous tracking and reconstruction framework, we initialize the track-

ing module (Section 4.4) with a simple initial model (e.g. a sphere), and iterate the

tracker until it converges to a pose that projects the initial model close to the object

region in the RGB-D image. Then the reconstruction module (Section 4.5) will take

all the frames and poses up to the current frame as input for the estimation of 3D

shape.

4.4 Tracking while the shape is frozen

4.4.1 Graphical model and inference

For the purpose of tracking, we assume the 3D object shape is known and no

motion model. Hence the RGB-D image at time t depends only on the 3D shape

and the pose. At this stage, we are interested in describing how the depth and
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Figure 4.3: The graphical model for tracking a single rigid 3D object.

the color of each RGB-D pixel is generated from the pose and the known shape,

thus, we simplify the original graphical model by treating the shape Φ as a single

variable and removing the time index t. This simplification leads to the graphical

model for tracking in Fig. 4.3.

In this model, given the per-pixel foreground/background model U, the shape

Φ and the pose p, the RGB-D image is sampled as a bag of pixels {X i
j, cj}1...NΩ .

More specifically, for each pixel location x in the RGB-D image, it is the depth Z

that is randomly drawn from the distribution P(Z(x)|p, Φ, U). But for convenience

and clarity, we use X i to denote Z(x) in the graphical model and in the following

derivation, setting

P(Z(x)|p, Φ, U) ≡ P(X i|p, Φ, U) . (4.3)

The joint distribution for a single pixel given by the graphical model in Fig. 4.3 is

P(X i, c, Φ, U, p, Ω) = P(Φ) P(p) P(X i|U, Φ, p) P(c|U) P(U) . (4.4)

Now marginalize over the foreground/background model U

P(X i, c, Φ, p) = P(Φ)P(p) ∑
u∈{ f ,b}

P(X i|U = u, Φ, p)P(c|U = u)P(U = u) . (4.5)
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We seek a ML estimate of the current pose:

P(X i, c|Φ, p) = ∑
u∈{ f ,b}

P(X i|U = u, Φ, p)P(c|U = u)P(U = u) . (4.6)

The per-pixel depth likelihoods P(X i|U= f , Φ, p) and P(X i|U=b, Φ, p) are defined

using a normalized smoothed delta function and a smoothed and shifted Heaviside

function

P(X i|U = f , Φ, p) =
δon(Φ(Xo))

η f
(4.7)

P(X i|U = b, Φ, p) =
Hout(Φ(Xo))

ηb
(4.8)

η f =
NΦ

∑
i=1

δon(Φ(Xo
i )) (4.9)

ηb =
NΦ

∑
i=1

Hout(Φ(Xo
i )) , (4.10)

where Xo is the back-projection of X i in object coordinates, following

Xo

1

 = Toc(p)

K−1X i

1

 . (4.11)

δon is the smoothed Dirac delta function and Hout is a shifted and smoothed Heav-

iside step function

δon(Φ) =
4 exp{Φ/σ}

(exp{Φ/σ}+ 1)2 (4.12)

Hout(Φ) =

1− δon(Φ) if Φ ≥ 0

0 if Φ < 0
. (4.13)

Here σ is a constant parameter that determines the width of the basin of attraction.

Larger σ gives wider base of convergence to the energy function, while smaller σ

leads to faster convergence. In our experiments, we empirically use σ = 2. These
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Figure 4.4: The form of the smoothed delta function δon and Heaviside function Hout

two functions are plotted in Fig. 4.4. The probability of foreground and background

models P(U = f ) and P(U = b) are uniform distributions:

P(U = f ) =
η f

η
, P(U = b) =

ηb
η

, η = η f + ηb . (4.14)

Substituting Eqn. 4.7∼4.14 into Eqn. 4.6, we obtain the likelihood of the pose p for

an individual pixel

P(X i, c|Φ, p) = Pfδon(Φ(Xo)) + PbHout(Φ(Xo)), (4.15)

where

Pf = P(c|U = f ) , Pb = P(c|U = b) , (4.16)

Assuming pixel-wise independence, the likelihood of the pose for the current w-

hole RGB-D image is

P(Ω|p, Φ) =
NΦ

∏
i=1

{
Pf

i δon(Φ(Xo
i )) + Pb

i Hout(Φ(Xo
i ))
}

. (4.17)
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4.4.2 Pose optimization

As in Section. 3, the cost function is written as a sum of log-likelihood over all

pixels

E =
NΦ

∑
i=1

log
{

Pf
i δon(Φ(Xo

i )) + Pb
i Hout(Φ(Xo

i ))
}

. (4.18)

The energy function is parameterized in terms of the pose change p∗, and the

gradients are found as

∂E
∂p∗

=
NΦ

∑
i=1

{[
Pf

i
∂δon

∂Φ + Pb
i

∂Hout

∂Φ

P(X i
i, ci|Φ, p)

∂Φ
∂Xo

i

]
∂Xo

i
∂p∗

}
, (4.19)

where the derivatives of δon and Hout are

∂δon

∂Φ
=

4 exp{Φ/σ}
σ(exp{Φ/σ}+ 1)2 −

8 exp{(2Φ)/σ}
σ(exp{Φ/σ}+ 1)3 (4.20)

∂Hout

∂Φ
=

−
∂δon

∂Φ if Φ ≥ 0

0 if Φ < 0
. (4.21)

The derivatives ∂Φ
∂Xo and ∂Xo

∂p∗ follow the same formula in Eqn. 3.13 and Eqn. 3.14 in

Section 3. We also use the same Levenberge-Marquardt iterations and local frame

pose update in Section 3 for the pose optimization.

4.4.3 Online learning of appearance model

The foreground/background appearance model P(c|U) is important for the robust-

ness of the tracking, and we adapt the appearance model online after the tracking

is completed on each frame. We use the pixels that have Φ(Xo) ≤ 3 (so, points that

best fit the surfaces of the object) to compute the foreground appearance model

and the pixels in the immediate surrounding region of the objects to compute the
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background model. The online update of the appearance model is achieved using

a linear opinion pool with learning rates {ρf,b} :

Pt(c|U = u) = (1− ρu)Pt−1(c|U) + ρuPt(c|U) . (4.22)

In all our experiments, we set ρf = 0.05 and ρb = 0.3. The background appearance

mode has a higher learning rate. This is because the object being reconstructed

is moving in a uncontrolled environment, and thus the change of appearance in

background is much faster that in the foreground.

4.5 Reconstruction while poses are frozen

4.5.1 Graphical model and inference

For the purpose of reconstruction, we assume the RGB-D image sequence Ω1...T

and the set of poses for each frame p1...T are known and the goal now is to infer the

3D shape Φ. We still start from the basic graphical model of Fig. 4.2, and since we

are now interested in estimating the per-voxel value ϕ, we simplify the graphical

model by treating each RGB-D image as a single variable Ω. The graphical model

for our reconstruction method is shown in Fig. 4.5.

The 3D object shape is represented as a set of labeled voxels {Xo, V, ϕ}, where

the label takes values V={in, out} depending on the voxel’s being inside or outside

the object. The number of voxels that are on the surface (ϕ = 0) is negligible by

comparison. The current RGB-D image Ωt depends on the current pose pt, the

set of voxels and their labels and the labels depend on the SDF value ϕ. The joint
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Figure 4.5: The graphical model for reconstructing a single object

distribution can therefore be expressed as

P(Ω1...T, p1...T, {Xo
j , Vj, ϕj}1...NΦ) = (4.23)

NΦ

∏
j=1

P(Xo
j )P(ϕj)P(Vj|ϕj)

T

∏
t=1

P(Ωt|{Xo, V}1...NΦ , pt)P(pt) ,

a form which permits a recursive update of {Xo, V}. Each discretized voxel lo-

cation Xo
i is drawn deterministically once and the term P(Vi|ϕ) should properly

allow the label Vi of each voxel location Xo
i to be drawn at random from the value

of the shape ϕi. Given the appearance model Pf and Pb from the tracking module

that we described in Section 4.4, we extract a foreground depth-colour image Ω̂t

from Ωt by including only those pixels for which Pf>Pb currently. The objective

then is to maximize the posterior probability of Φ (i.e. the value of the SDF) given

the first t frames and poses

max
Φ

P(Φ|p1...t, Ω̂1...t). (4.24)

Assuming independence between each frame and pose and also per-voxel inde-

pendence, we first marginalize over all possible labels Vi for each pixel on the joint
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distribution

P(p0...t, Ω̂0...t, Φ) ∝ (4.25)

P(Φ)
NΦ

∏
j=1

∑
v∈{in,out}

{
P(Vj = v|ϕj)

T

∏
t=1

P(Ω̂t|{Xo
j , Vj = v}, pt)P(pt)

}
,

where the prior of SDF term is

P(Φ) =
NΦ

∏
j

P(ϕj) =
NΦ

∏
j

P(Φ(Xo
j )) . (4.26)

The posterior distribution of the shape Φ follows

P(Φ|p0...t, Ω̂0...t) = (4.27)

P(Φ)
NΦ

∏
j=1

∑
v∈{in,out}

{
P(Vj = v|ϕj)

T

∏
t=1

P(Ω̂t|{Xo
j , Vj = v}, pt)

}
.

The term P(Ω̂t|{Xo
j , Vj = v}, pt) of Eqn. 4.27 gives, per voxel, the likelihood of

generating the measured pixel’s depth value. Given a particular voxel Xo
j with its

labeling Vj and the current pose pt, a pixel position is determined from

x̂ = KTco(pt)[X
o
i 1]⊤ . (4.28)

The closest measured pixel x is determined and back-projected into the scene, al-

lowing a fractional signed range discrepancy d to be determined along the direction

of the projected ray as

dj =
[R(pt)Xo

i + T(pt)]
⊤[K−1Zx]

|K−1Zx|2 − 1 , (4.29)

which is positive if the voxel Xo
i lies behind the measured surface, and vice versa. The

resulting likelihoods of the voxel lying inside or out of the object are approximated
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Figure 4.6: The form of the likelihood function Lin.

using

P(Ω̂t|{Xo
j , Vj = in}, pt) ∝ Lin(j) = 0.5(sgn(dj)e−|dj|/σd + 1) , (4.30)

P(Ω̂t|{Xo
j , Vj = out}, pt) ∝ Lout(j) = 1− Lin(j) , (4.31)

forms that makes us equivocal (Lin,out ≈ 0.5) about voxels that are either far from

the surface or exactly on the surface, but give a low probability of being inside

if the voxel is immediately in front of the surface, and vice versa. Lin is plotted

in Fig. 4.6. (This form of likelihood does not increase Lout if the surface is visible

behind the voxel. Neglecting that extra information has not been detrimental in

our experiments.)

Note that, given any RGB-D image, Lin and Lout can provide information only

about voxels between the camera and the object, and nothing about those far be-

hind the surface of the object. So in order to stabilize the estimation of shape, we

place a initial guess with respect to a chosen shape (i.e. SDF) Φo:

Lin
0 (j) = G(Φo(Xo

j )) , (4.32)

Lout
0 (j) = 1− G(Φo(Xo

j )) . (4.33)
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Figure 4.7: The form of the initial guess of likelihood G(Φ).

In all our work we use as initial guess

G(Φ0) = a(1+eΦ0/σG)−1 + (1− a)(0.5) , a ∈ [0, 1] (4.34)

with influence a=0.5 and smoothness σG=4, as shown in Fig. 4.7. (An uninforma-

tive prior has a=0.) The time-cumulative likelihood ∏t P(Ω̂t|{Xo
i , Vi = v}, pt) for

a particular voxel j is found as

T

∏
t=1

P(Ω̂t|{Xo
j , Vj = v}, pt) ∝ Lin

1...t(j) = Lin
0 (j)Lin

1...t−1(j)Lin
t (j) . (4.35)

The term P(Vj = v|ϕj) in Eqn. 4.27 is expressed per voxel by a smoothed Heav-

iside steps function H:

P(V = out|ϕ) = H(ϕ) , (4.36)

P(V = in}|ϕ) = 1− H(ϕ) , (4.37)

H =
1

exp{−ϕ/σH}+ 1
. (4.38)

σH controls the smoothness of the Heaviside function and as shown in Fig. 4.8.
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Figure 4.8: The form of the smoothed Heaviside function H.

Larger σH results in more stable behavior of the shape optimization , but also leads

to greater loss of the details in the 3D shape; and vice versa for smaller σH. Empir-

ically, σH = 4 appears a good compromise and we use this in all our experiments.

Following Eqn. 4.26, we now specify a geometric prior on Φ that rewards a

signed distance function with unit gradients (Li et al. [75]):

P(Φ) =
NΦ

∏
j=1

1
σΦ
√

2π
exp{−

(|▽Φ(Xo
j )| − 1)2

2σΦ
} (4.39)

where σΦ specifies the relative weight of the prior. The term |▽Φ(Xo
j )| is the mag-

nitude of the gradient at point Xo
j and for a SDF, it should equal to one everywhere.

Maintaining a good SDF is desirable as the tracking step can then directly use the

shape estimation up to the current frame for tracking.
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4.5.2 Shape optimization

Combining the three terms in Eqn. 4.35∼4.39 and taking logs, we have the log

posterior of shape as the cost function

EΦ = log P(Φ|p1...t,Ω̂1...t) ∝ (4.40)
NΦ

∑
j=1

{
log
{

Lin
1...t(j) [1−H(Φ(Xo

j ))] G(Φ0(Xo
j ))+

Lout
1...t(j) H(Φ(Xo

j )) [1−G(Φ0(Xo
j ))]
}
−

(|▽Φ(Xo
j )| − 1)2

2σΦ

}
.

We now differentiate with respect to Φ:

∂EΦ

∂Φ
= (4.41)

NΦ

∑
j=1

{
δ(Φ)

{
Lout

1...t[1− G(Φ0)]− Lin
1...tG(Φ0)

}
Lin

1...t[1− H(Φ)]G(Φ0) + Lout
1...tH(Φ)[1− G(Φ0)])

− 1
σΦ

[
▽2Φ− div

( ▽Φ
|▽Φ|

)]}
.

where ▽2 is the Laplacian operator and δ is the derivative of the smoothed Heav-

iside step function, i.e. a smoothed Dirac delta function. Interestingly, δ(Φ) is a

way of expressing the uncertainty on the surface of the object. A small σH will lead

to a tighter basin of δ, which in turn leads to more detailed surface reconstruction.

However, less uncertainty on the surface also leads to more tolerance of the vio-

lation of the prior constraint P(Φ), which will result in an unstable SDF. We seek
∂EΦ
∂Φ = 0 by carrying out steepest-ascent using the following gradient flow

∂Φ
∂t

=
∂EΦ

∂Φ
(4.42)

In practice, we implement this using a simple numerical scheme in a discretized

volume. All spatial derivatives are computed using central differences and the

Laplacian uses a 3x3x3 spatial kernel. We use σΦ=3 and a time-step ∆t=1 for all

experiments. We follow the requirement for SDF stability (see Li et al. [75]) that
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∆t/σ2
Φ < 0.25.

4.6 Implementation and evaluation

4.6.1 Implementation

The tracking and reconstruction algorithms have been implemented both on CPU

and on GPU. We use 640×480 colour and depth images as input and 200×200×200

voxel cubes to contain the object’s SDF. On an Intel Core i7 3.4 GHz CPU, the track-

ing algorithm can still run at around 100 Hz frame rate. For real-time performance,

the reconstruction algorithm is only suitable for GPU implementation. Each itera-

tion of the shape evolution takes around 1.5∼2 ms on a GTX 680 GPU, and in order

to recover a coarse shape for the tracking for the first frame, the shape evolution

requires around 100 iterations, which is significantly more than the subsequent

frames that only requires around 10∼20 steps.

4.6.2 Qualitative evaluation

A variety of evaluations, both qualitative and quantitative have been performed to

test the performance of our method. We begin with several real-world tracking-

reconstruction sequences, which show that our method is robust to initialization

and outliers and can work in unconstrained environments. Next we use generated

ground truth data to evaluate the accuracy of both tracking and reconstruction.

Finally, we compare both tracking and reconstruction results with KinectFusion

[92], arguably the current state-of-the-art.

Figs. 4.9, 4.10 and 4.11 show examples of our method simultaneously tracking

and reconstructing different objects: a piece of sponge, a hand with fixed gesture
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Figure 4.12: Sample frames from sequence where a synthetic object has been added to the
color (top) and depth image (bottom).

and a shoe. The sponge reconstruction is initialized using a sphere and the other

two using a cube. The last row of each figure shows the reconstruction result. All

three objects are successfully reconstructed using less than 30 seconds of data. Note

that the sequences are filmed in an unconstrained environment and the objects are

small, and moving and hence reconstruction using KinectFusion is difficult.

We use pixels that have Pf>Pb for reconstruction. However, since in Fig. 4.10 the

object is close to the background (the hand is close to the shoe), that an additional

constraint is applied and we use only we only use pixels from the foreground

region which are at least 2 pixels away from any background pixel. This makes the

reconstruction results slightly smaller than the real object, by a fixed margin. the

surface of the reconstructed shoe is also smoother.

4.6.3 Quantitative evaluation

Next we evaluate our tracking and reconstruction performance using ground truth

data. Again, we use synthetic RGB-D sequences for this evaluation. We use the

same method as in Chapter3, but add extra colour information by projecting the
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texture of model onto the synthetic image. Some sample frames are shown in

Fig. 4.12. The surface of the object has been fully observed across the frames. We

present two evaluations. First, we consider a perfectly known model and perform

tracking only, measuring the pose accuracy. Second, we initialize with a spherical

model and run simultaneous tracking and reconstruction. We evaluate the accuracy

of the recovered poses by the difference from the ground truth.

As shown in Fig. 4.13 the maximum error in these “ideal” conditions with a

known object is less than 1◦ in rotation and less than 2 mm in translation where the

object is at a distance of around 0.8 m distance. When reconstructing and tracking

a previously unknown object, the maximum error increases to 6◦ in rotation and

3 mm in translation. Examples showing tracking with reconstructed data, even

under significant occlusion by the hand holding the object, are given in Videos B.2

in Appendix B.

The constant parameter σd in Eqn. 4.31 controls the thickness of the reconstruct-

ed model, relative to the volume quantization. We use a volume of 200×200×200

for all experiments in this chapter, with large objects scaled and reconstructed into

the same fixed sized volume. To show the sensitivity of reconstruction accuracy to

σd we vary it from 4 to 40 (see Fig. 4.14). We evaluate the accuracy of reconstruction

by computing the average alignment error between the reconstructed result and the

ground truth. The initial average alignment error is 6 mm. For values of σ < 20

the error decreases as more frames are observed and converges at around frame

150. When σd = 20, the reconstructed shape is still visually correct, but the average

alignment error is becoming unacceptably large. When σd = 40, the reconstructed

shape becomes incorrect (i.e. too thick) after the first few frames, resulting in track-

ing failure in all following frames, and the shape is not correctly reconstructed. We

used σd = 8 for all our other tests.

In the last experiment, we compare the quality of both our tracking and the re-



4.6 Implementation and evaluation 86

−200

0

200

x 
[m

m
]

−200

0

200

y 
[m

m
]

700

800

900

z 
[m

m
]

−200

0

200

pi
tc

h 
[d

eg
]

−50

0

50

100

ya
w

 [d
eg

]

0 50 100 150 200
−200

−100

0

100

frame no.

ro
ll 

[d
eg

]

 

 

Ground truth Known object Unknown object

0

1

2

3

x 
er

ro
r 

[m
m

]

0

1

2

3

y 
er

ro
r 

[m
m

]

0

1

2

3
z 

er
ro

r 
[m

m
]

0

2

4

6

pi
tc

h 
er

ro
r 

[d
eg

]

0

2

4

6

ya
w

 e
rr

or
 [d

eg
]

0 50 100 150 200
0

2

4

6

ro
ll 

er
ro

r 
[d

eg
]

frame no.

Figure 4.13: Quantitative evaluation of the accuracy our method for tracking 3D rigid
object on synthetic data. The left column shows the absolute ground truth translation and
rotation, and the right column shows the error in translation and rotation. The error in
translation is measured in mm while rotation is measured in degree.
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Figure 4.14: The effect of different σd value on the accuracy of our method for 3D recon-
struction measured using an average alignment error.

construction result with those from KinectFusion [92]. Since KinectFusion requires

a static scene to perform reconstruction, we place the object (a piece of sponge) in

the centre of a random scene and use the Kinect SDK to analysis a sequence, in

which we move the Kinect around the object to obtain most views of the object.

Some sample frames are shown in Fig. 4.15. The first row shows the colour frame,

and the second row visualizes the reconstruction re-projected onto the colour im-

age (after aligning with the depth frame). The third row shows the ‘Fusion frame’

from the Kinect SDK, which is the KinectFusion reconstruction result up to and

including the current frame. The last two columns show the reconstruction results

from our method compared to those of KinectFusion. Both are similarly visually

pleasing. The 3D model produced by KinectFusion has an incorrect lip on the top

surface, while that part is correctly reconstructed by our algorithm. Our method

does however produce a more noisy surface below the reconstructed 3D shape, in

the areas that have never been observed by the camera. This is because noisy out-

lier depth pixels can propagate incorrect membership probabilities to areas in the

3D volume where the related views of object has never be observed.

The KinectFusion result are directly obtained from the Kinect SDK, using a
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384× 384× 384 volume and 384 voxels/metre. In Fig. 4.16, we compare the camera

pose produced by KinectFusion with that from our method. The fixed Euclidean

transform between the two sets of poses is removed by aligning the two camera

poses using the trajectories of two camera centres. As shown in Fig. 4.16 our track-

ing result is very close to the output of KinectFusion despite relying only on the

local geometry of the reconstructed object.

4.7 Conclusion

In this chapter, we have introduced a novel probabilistic framework for simul-

taneous tracking and reconstruction using RGB-D data. Our method is able to

track and reconstruct a small moving object in unconstrained environment, and is

robust to outliers, occlusion and missing data in the input imagery. The recon-

struction module in our method evolves a 3D level-set embedding function on a

per-voxel inside/outside probability volume, which is learned incrementally on-

line. The probabilistic formulation of the reconstruction allows the introduction of

a shape prior into the 3D shape evolution, and in turn this permits initialization

of the whole tracking-reconstruction from simple 3D models. The shape evolution

comprises independent per-voxel operations and can easily be implemented in a

massively parallel fashion.

In the demanded stroke rehabilitation system, our tracking algorithm with RGB-

D data is able to robustly track the control object in patients’ hand, however, in or-

der to track the patients feet, there still remain a few issues to be solved. First, two

interacting feet usually share identical appearance, which can lead two instances

of independent single object trackers being confused when two feet are close to-

gether. Secondly, the proposed single object tracker does not impose any physical

constraint on the position of the object. This is a valid assumption when a sin-
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gle object is moving free space. However, when tracking multiple objects, objects

should not occupy the same space. In Chapter 5 we extend the current tracking

algorithm again, to simultaneously track multiple objects while considering the

physical constraints.



5

3D Tracking of Multiple Object with
Identical Appearance

A shortcoming of current approaches to 3D tracking of objects using both ap-

pearance and depth data is that they are confined to single objects. Multiple

object tracking can be attempted with replicated single trackers, but this ne-

glects the constraint that objects should not occupy the same space, and fails

when multiple objects have highly similar appearance. In this chapter we de-

velop a graphical model which takes account of similarity and proximity and

leads to robust real-time tracking of multiple objects from RGB-D data, without

recourse to bolt-on collision detection. An early version of the work has been

published in Ren et al. [112].

5.1 Introduction

A key limitation of the colour-depth 3D tracker described in Chapter 4 is its fo-

cus on single objects. One straightforward approach to tracking multiple objects

would be to replicate single object trackers. However, this straightforward exten-

sion would be naive, ignoring two obvious pitfalls. First is similarity in appearance,
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Figure 5.1: Sample results when using two independent single object trackers and the
proposed multi-object tracker to track two feet with identical appearance. (a) input RGB-D
image. (b) Foreground probability. (c) Failed tracking result using two single-object tracker.
(d) Correct tracking result using the proposed multi-object tracker.

multiple objects may have similar shape and colour (for example, cars are usually

followed by more cars, not by elephants, hands and feet come in pairs.) Second is

the physical constraint between multiple bodies, that they must not intersect one

another.

As an example of this problem, when we use two independent instances of the

single-object tracker of Chapter 4 to track feet (as required in certain rehabilitation

exercises). The trackers fail as soon as the two feet move close together. Fig. 5.1) il-

lustrates what happens to the independent single-object trackers and the proposed

multi-object tracker when two feet with identical appearance and shape move next

to each other.

In this chapter we address these two problems, proposing a colour-depth 3D

tracker that can recover the 3D pose of multiple objects with identical appearance,

while preventing them from intersecting. Section 5.2 gives an overview of related
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work. Section 5.3 describes our probabilistic formulation of the multiple object

tracking problem. In Section 5.4, we describe the performance our implementation

and in Section 5.5 we provide experimental insight into its operation. Conclusions

are drawn in Section 5.6.

5.2 Related Work

Multi-object tracking and occlusion handling are two strongly connected problems.

The respective literature includes various approaches that tackle both problems

simultaneously. The majority of previous works are in 2D image domain, tracking

2D shapes or bounding boxes. Such methods are, by construction, limited to the

estimation of the 2D poses. Although some exceptions of 2D tracking methods

consider depth up to a level of layer ordering, they are still not suitable for our

purpose of tracking full 6 DoF poses of 3D objects. A broader review of the general

multi-target tracking has been made in Chapter 2 and in this section, we focus on

reviewing recent works of full 6-DoF 3D multi-object tracking.

The work by Kim et al. [56] and Kyriazis and Argyros [67, 68] are the most rele-

vant to the problem of recovering 3D poses of multiple objects across time. Kim et

al. [56] performed simultaneous camera and multi object pose estimation in real-

time using only colour image as input. First, all objects are placed statically in the

scene and the system is initialized with a PTAM-like (PTAM, Klein and Murray

[58]) structure-from-motion reconstruction step. A point cloud representation of

the whole scene (including the objects and the static environment) is generated by

triangulating matched SIFT points on each key frame. Secondly, the use specifies

the object by drawing 3D boxes on a key frame and the object model is then repre-

sented by a set of coloured 3D points on the surface of the 3D boxes. Finally, at each

frame, SIFT features are first used for object detection, then RANSAC is used to
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compute the object pose that best matches the object model and the detected SIFT

feature. However,the bottom-up nature of the work only allows for limited robust-

ness and extensibility. With the planar model representation used, only cube-like

objects can be tracked in the proposed system.

In Kyriazis and Argyos [67], the authors track multiple objects and a moving

hand in the scene using RGB-D input in real-time. However, the basic assumption

of the work - that there is a single actor - limits the system to only being able to

track the motion of the object that is currently manipulated by the moving hand

while the rest of the scene is static. More recently, in Kyriazis and Argyos [68], the

author extend the method in [67] to track the poses of multiple 3D objects and two

hand simultaneously using a “Ensemble of Collaborative Trackers” (ECT). A set of

independent single trackers is initialized, and the tracking results of all trackers are

fed to a global memory to allow all trackers to collaborate in the tracking in later

frames. However, the hypothesis-test framework of the system requires discrimi-

native appearance models for successful tracking of multiple objects, making it not

suitable for the purpose of tracking of objects which share identical appearance.

Physical constraints in 3D object tracking are usually enforced by reducing the

number of degrees of freedom in the state. An elegant example of tracking of

always-connected objects (or sub-parts) in this way is given by Drummond and

Cipolla [39]. However, when tracking multiple independently moving objects,

physical constraints are introduced suddenly and intermittently by the collision

of objects: they cannot be conveniently enforced by dof reduction. Indeed, rather

few works explicitly model the physical collision between objects. In Oikonomidis

et al. [97], the authors track two interacting hands with Kinect input. A penalty

term measuring the inter-penetration of fingers is introduced to invalidate impossi-

ble articulated poses. In Kyriazis and Argyros [96, 67] a hand and a moving object

are simultaneously tracked, and invalid configurations similarly penalized. In both

cases the measure used is the minimum magnitude of 3D translation required to
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Figure 5.2: Illustration of the geometry of the scene and the fusion of multiple SDFs in
camera coordinates.

eliminate intersection of the two objects, a measure computed using the Open Dy-

namic Engine library (due to Smith [131]). In contrast, in our proposed method the

collision constraint is more naturally enforced through a probabilistic generative

model, without the need of an additional physics simulation engine.

5.3 3D tracking of multiple objects

The theoretical underpinning of our multi-object tracker is again a probabilistic

model, based on the one from Chapter 4. After introducing the graphical model

and scene geometry in §5.3.1, we detail inference on the graphical model in §5.3.2

and §5.3.3. The optimization method and the online learning of appearance models

are summarized in §5.3.4.

5.3.1 Generative Model and scene geometry

The scene geometry and notations for multi-object tracking are illustrated in Fig. 5.2.

The M objects being tracked are represented by their SDFs {Φ1 . . . ΦM}. Given the

poses {p1 . . . pM} at a particular time the shapes are transformed into the camera

coordinates, where they are fused into a single shape union Φc. The formulation of
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Figure 5.3: Graphical model for our multi-object tracker.

the shape union is explained later in the section. The same foreground/background

appearance model Pf , Pb as described in Chapter 4 is adopted in our multi-object

tracking method. The RGB-D image is assumed to be generated from the shape

union and the appearance model.

The objective of multi-object tracking is to find the optimal sequence of sets

of poses {p1,t . . . pM,t}1..T given the set of object shapes {Φ1 . . . ΦM} and observed

RGB-D images {Ω1...ΩT}:

max
{p1,t ...pM,t}1..T

P({p1,t . . . pM,t}1..T|Φ1 . . . ΦM, Ω1 . . . Ωt) . (5.1)

We do not assume a motion model, hence all set of poses in the sequence are

independently estimated at each time step. We drop the index t for clarity, writing

Eqn. 5.1 as.

max
p1...pM

P(p1 . . . pM|Φ1 . . . ΦM, Ω) (5.2)

The graphical model for a single pixel in RGB-D image is shown in Fig. 5.3.

When tracking multiple objects in the scene, the generated RGB-D image Ω should

be conditionally dependent on the set of 3D object shapes {Φ1 . . . ΦM} and their

corresponding poses {p1 . . . pM}. To make the generative process more intuitive,
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we introduce an intermediate variable Φc, which is the union of all 3D object

shapes in camera coordinates. The generative process is as follows. The set of 3D

shapes and their corresponding set of poses first generate a ‘shape union’ Φc in

camera coordinates. Then, for each pixel location, the depth is drawn from the

foreground/background model U (same as in Chapter 4) and the shape union Φc

and the color is drawn from the appearance model P(c|U). Note that when the

number of objects M = 1 the generative model deflates gracefully to the single

object case given in Chapter 4.

The joint probability of the graphical model is

P(Φ1 . . . ΦM, p1 . . . pM, Φc, X i, U, c) = (5.3)

P(Φ1 . . . ΦM)P(Φc|Φ1 . . . ΦM, p1 . . . pM)P(X i, U, c|Φc)P(p1 . . . pM|Φ1 . . . ΦM) ,

where

P(X i, U, c|Φc) = P(X i|U, Φc)P(c|U)P(U) . (5.4)

Since the generation of the shape union Φc is deterministic given the set of shapes

and poses, we drop the term P(Φc|Φ1 . . . ΦM, p1 . . . pM). By marginalizing over

the foreground/background model U, the posterior distribution of the set of poses

{p1 . . . pM} given all object shapes {Φ1 . . . ΦM} for a single pixel {X i, c} follows

P(p1 . . . pM|X
i, c, Φ1 . . . ΦM) ∝ P(X i, c|Φc)P(p1 . . . pM|Φ1 . . . ΦM) , (5.5)

where

P(X i, c|Φc) = ∑
u∈{ f ,b}

P(X i|U = u, Φc)P(c|U = u)P(U = u) . (5.6)

We refer the first term P(X i, c|Φc), which describes how likely a pixel — both its
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colour value and the pixel location — is generated by the current shape union, as

the data term; and the second term P(p1 . . . pM|Φ1 . . . ΦM), which puts a prior on

the set of poses given the set of shapes, as the physical constraint term.

5.3.2 Data term

The first part of the data term P(X i|U = u, Φc) is similarly defined as the per-pixel

likelihood term with normalized smoothed delta function δon and a smoothed and

shifted Heaviside function Hout

P(X i|U = f , Φc) =
δon(Φc(Xc))

ηc
f

(5.7)

P(X i|U = b, Φc) =
Hout(Φc(Xc))

ηc
b

(5.8)

ηc
f =

NΩ

∑
j=1

δon(Φc(Xc
j )) (5.9)

ηc
b =

NΩ

∑
j=1

Hout(Φc(Xc
j )) , (5.10)

where Xc is unprojected from X i in the camera coordinates, following

Xc = K−1X i . (5.11)

The functions δon and Hout are the same smoothed Dirac delta function and the

smoothed Heaviside step function as in Chapter 4. The per-pixel labelling P(U= f )

and P(U=b) follows uniform distributions:

P(U= f ) =
ηc

f

ηc
, P(U=b) =

ηc
b

ηc
, ηc = ηc

f + ηc
b . (5.12)
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Substituting Eqn. 5.7∼5.12 into Eqn. 5.6, we obtain the likelihood of the shape

union for a single pixel

P(X i, c|Φc) = Pfδon(Φc(Xc)) + PbHout(Φc(Xc)), (5.13)

where Pf=P(c|U= f ) and Pb=P(c|U=b).

Now we describe how the shape union Φc is formed given the set of shapes

and poses. Assuming multiple objects do not intersect, their SDFs can be fused

together by taking the minimum value of all SDFs. Given a set of object shapes

{Φ1 . . . ΦM} and their corresponding set of poses {p1 . . . pM}, we transform each

object shape Φm into camera coordinates as Φc
m using Tco. Then the object shapes

in camera coordinates {Φc
1...Φc

M} are fused into a single SDF Φc with a minimum

function. We use an analytical relaxation to approximate the minimum function as

Φc = min (Φc
1, Φc

2, ..., Φc
M) ≈ −1

α
log

M

∑
m=1

exp{−αΦc
m} . (5.14)

where α is a constant parameter that controls the smoothness of the approximation.

Theoretically, a larger α gives a better approximation of the minimum function, but

empirically, we find that smaller α gives wider based of convergence for the tracker.

We use α=2 in our case. The per-voxel values of Φm and Φc
m are:

Φc
m(Xc) = Φm(T

oc

Xc

1

) = Φm(Xo). (5.15)

Using Eqn. 5.15 in Eqn. 5.14:

Φc(Xc) = −1
α

log
M

∑
m=1

exp{−αΦm(T
oc
m Xc)} (5.16)

= −1
α

log
M

∑
m=1

exp{−αΦm(Xo
m)} ,
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where Xo
m is the transformation of Xc in the m-th object coordinate system. The

likelihood of a single pixel now follows

P(X i, c|Φc) = (5.17)

Pfδon

(
−1

α
log

M

∑
m=1

exp{−αΦm(Xo
m)}

)
+ PbHout

(
−1

α
log

M

∑
m=1

exp{−αΦm(Xo
m)}

)
.

Assuming pixel-wise independence, the log-likelihood of the whole RGB-D image

gives us the data term of the overall energy function

Edata = − log P(Ω|Φc) = −
NΩ

∑
j=1

log P(X i
j, c|Φc) . (5.18)

To optimize the energy function, we require the derivatives of this term w.r.t. the

change of the set of pose parameters θ∗={p∗1 . . . p∗M} in which each p∗m, recall,

is a 6-vector. They are found from (here we drop the pixel index j for clarity)

∂Edata

∂θ∗
= − ∑

X i∈Ω

{
Pf ∂δon

∂Φc + Pb ∂Hout

∂Φc

P(X i, c|Φc)

∂Φc(Xc)

∂θ∗

}
(5.19)

where

∂Φc(Xc)

∂θ∗
= −1

α

M

∑
m=1

wm
∂Φm

∂Xo
m

∂Xo
m

∂θ∗
, (5.20)

wm =
exp{−αΦm(Xo

m)}
∑M

k=1 exp{−αΦk(Xo
k)}

, (5.21)

and
∂Xo

m
∂θ∗

=

[
∂Xo

m
∂p∗1

. . .
∂Xo

m
∂p∗M

]
(5.22)

The derivatives ∂Xo
m

∂p∗k
follow the same formula as in Eqn. 3.14 from Chapter 3 if

m = k, otherwise it equals to zero. We use central finite differences to pre-compute

the gradients of the SDFs ∂Φm
∂Xo

m
for each object as in Chapter 3.
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Note that the derivative of this energy term has a very clear meaning. Given

a pixel X i in the RGB-D image domain, instead of assigning this pixel determin-

istically to a certain object, we back-projected X i (i.e. Xc in camera coordinates)

into all objects’ coordinate systems with the current set of poses {p1 . . . pM}. Then,

a membership weight wm is automatically computed according to Eqn. 5.21. For

example, consider a point in camera coordinates Xc. If the back-projection Xo
m is

close to the m-th object’s surface (Φ(Xo
m) ≈ 0) and other back-projections Xo

k are

further away from the surfaces (Φ(Xo
k) ≫ 0), then we will find wm → 1 and the

other wk → 0, with ∑M
m=1 wm = 1. Thus wm can be interpreted as the probability

that a pixel Xc belongs to the m-th object.

5.3.3 Physical constraint term

Now we discuss the physical constraint term P(p1 . . . pM|Φ1 . . . ΦM) in Eqn. 5.6.

We decompose the joint probability of all object poses given all 3D object shapes

into a product of per-pose probabilities:

P(p1 . . . pM|Φ1 . . . ΦM) = P(p1|Φ1 . . . ΦM)
M

∏
j=2

P(pj|p1...pj−1, Φ1 . . . ΦM) (5.23)

If we do not have any pose priors on any single objects, we can ignore the proba-

bility term P(p1|Φ1 . . . ΦM). The remaining products can be used to enforce pose-

related constraints. Here we use them to avoid collisions in the tracker by defining

them such that objects do not penetrate each other.

The probability P(pj|p1...pj−1, Φ1 . . . ΦM) is defined based on the fact that a

surface point on one object should not move inside any other objects. For each

object Φm we uniformly and sparsely sample a set of K collision points Cm =

{Co
m,1 . . . Co

m,K} from its surface in object coordinates. At each timestep these are

transformed into the camera frame as {Cc
m,1 . . . Cc

m,K} using the current pose pm.
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Let us denote the partial union of SDFs {Φc
1 . . . Φc

m−1} by Φc
−m. Our proposition

now is that we can write

P(pm|{p1 . . . pm−1}, Φ1 . . . ΦM) ∼ 1
K

K

∑
k=1

Hout
(
Φc
−m(C

c
m,k)

)
(5.24)

where Hout is the off-set smoothed Heaviside function defined in Chapter 4. The

rationale is that if all the collision points on object m lie outside the shape union of

objects 1 to m− 1, this quantity will tend to unity, whereas if progressively more

and more of the collision points lie inside the partial shape union, the quantity

tends to zero. The negative log-likelihood of Eqn. 5.24 gives us the second part of

the overall cost

Ecoll = −
M

∑
m=1

log

(
1
K

K

∑
k=1

Hout
(

Φc
m−(C

c
m,k)

))
. (5.25)

5.3.4 Optimization and appearance learning

The overall cost is the sum of the data term and the collision constraint term

E = Edata + Ecoll . (5.26)

To optimize the set of poses {p1 . . . pM}, we use the same Levenberg-Marquardt

iterations and local frame pose updates as given in Chapter 3 .We also follow the

same online appearance adaptation scheme as in Chapter 4 after the tracking is

completed for each frame. We use the pixels that have |Φc(Xc)| 6 3 to compute

the surface appearance model and the pixels in the immediate surrounding region

of the objects to compute the background model. This involves points that best fit

the surfaces of multiple objects.
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Figure 5.4: Quantitative evaluation of the processing speed of our tracker on CPU with
respect to the number of objects

5.4 Implementation and performance

We have implemented our multi-object tracker on an Intel Core i7 3.4GHz CPU,

where a 30Hz frame rate is maintained when tracking up to 5 objects. We have

also implemented a specialized version of our tracker on GPU for 2 objects, to

track patients’ hands and feet. On a NVDIA GTX 680 GPU, the speed of CPU and

GPU implementations is similar at 15 ms per frame because (i) we only use pixels

that are close to the projection of the object in the depth image and (ii) most of

the tracked objects occupy a small region of the RGB-D image. This means we

only leverage a few thousand points, which does not take full advantage of the

computational power of the GPU. If a larger number of points is used (i.e when

tracking objects that occupy larger image regions or when using denser depth),

we expect the GPU implementation to outperform the CPU implementation by a

larger margin. The processing time on CPU w.r.t. the number of object is shown in

Fig. 5.4. As expected, the complexity of the method grows linear in the number of

objects.
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Figure 5.5: Sample frames from our synthetic sequence for experiment.

5.5 Evaluation

We have performed a variety of experimental evaluations, both qualitative and

quantitative. Further qualitative examples of our algorithm tracking different types

of objects in real-time and under significant occlusion and missing data are provid-

ed in Video B.3 in Appendix B.

5.5.1 Quantitative evaluation

We begin with two sets of quantitative experiments to evaluate the proposed method.

For the first (Fig. 5.6) we follow a standard benchmarking strategy from the marker-

less tracking literature and evaluate our tracking results on synthetic data, since

ground truth information for real data is very difficult to obtain. We move two

objects of known shape with similar appearance in front of a virtual camera and

generate RGB-D frames. The objects periodically move further apart then closer to

each other. We add zero-mean Gaussian noise to both the rendered colour and the

depth images. Four sample frames from the test sequence are shown in Fig. 5.5.

Using this sequence we compare the tracking accuracy of our multi-object track-
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instances of the single-object tracker described in Chapter 4
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Figure 5.7: Sample real world RGB-D frames used in our experiment.

er with two instances of the single object tracker that we described in Chapter 4.

Translations are measured in mm and rotations are measured in degrees. In the

plot of Fig. 5.6 the green line shows the relative distance between the two objects.

Note that this value has been scaled and offset for visualization. The dotted vertical

lines with numbers correspond to the frames shown in Fig. 5.5. It can be seen that

when the two objects with similar appearance are neither overlapping nor close (e.g.

frame 94), using either two single object trackers or our multi-object tracker pro-

vide similarly accurate results. However, once the two objects move close together

(e.g. frames 78, 111 and 142), the two separate single object trackers produce a very

large error. The single object tracker fails to model the pixel membership, which

leads to an incorrect pixel association when the two objects are close together. Our

soft pixel membership in the multi-object tracker solves this problem.

The second quantitative experiment (Fig. 5.8) makes a similar comparison, but

with real imagery. As before, it is difficult to obtain the absolute ground truth pose

of the objects, and instead we measure the consistency of the relative pose between

two static objects, while moving the camera around. The camera is always aimed

towards the two objects. Example frames are shown in Fig. 5.7. When the two

recovered poses are accurate we would expect consistent relative translation and

rotation through the whole sequence. As shown in Fig. 5.8, our multi-object tracker
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object tracker and two instances of the single-object tracker

is able to recover much more consistent relative translation and rotation than two

independent one-body trackers of Chapter 4.

5.5.2 Qualitative evaluation

We use five challenging real sequences to demonstrate the robust performance of

our multi-object tracker. The results are shown in Figs. 5.9∼5.13. For Figs. 5.9 to

5.12, rows 1 and 2 show the colour and the depth image inputs and row 3 shows the

per-pixel foreground probability Pf . Row 4 shows the per-pixel membership weight

wm, the magenta colour (w1≫0.5, w2≪0.5) and cyan colours (w2≫0.5, w1≪0.5)

corresponding to the two objects, and the blue coloured pixels have ambiguous

membership (w1≈w2≈0.5) . Row 5 shows the final tracking result.

In Figs. 5.9 and 5.10, we use well-carpentered models for tracking. Fig. 5.9 shows

the tracking of two pieces of sponge with identical shape and appearance model-
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s. Our tracker is able to track through heavy occlusions and handle challenging

motions. In Fig. 5.10 we simultaneously track a white cup and a white ball to

demonstrate the effectiveness of the physical collision constraint. Note that even

though there is no depth observation from the ball owing to significant occlusion

from the cup, our algorithm can still estimate the location of the ball using the

physical constraint alone.

In contrast, Figs. 5.11 and 5.12 show our tracker using reconstructed and hence

somewhat inaccurate 3D shapes for tracking. First in Fig. 5.11, we track two inter-

acting hands (fixed hand articulation pose). Even though the hand models do not

fit the observation perfectly, the tracker still recovers the poses of both hands by

finding the local minimum that best explains the colour and depth observations.

In Fig. 5.12 we track two interacting feet with a pair of approximate shoe models.

Throughout most of the sequence our tracker successfully recovers the two poses.

However, we do also encounter two failure cases here. The first one is shown in

column 4 of Fig. 5.12, where the shoe is incorrectly rotated. This happens because

the 3D model is somewhat rotationally ambiguous around its long axis. The second

failure case can be seen in column 6. Here, the ground pixels (i.e. the black shadow)

have very high foreground probability, as can be clearly seen in row 3. With most

of one foot occluded, the tracker incorrectly tries to fit the model to the pixels with

high foreground probability, which leads to failure.

Note however that, our tracker does automatically recover from both failure

cases. As soon as the feet move out of the ambiguous position, the multi-object

tracker use the previous incorrect pose as initialization and converges to the correct

pose at the current frame.

Finally, in Fig. 5.13 we show a challenging sequence where 5 pieces of toy bricks

are tracked to prove that the proposed tracker is able to handle larger number of

objects. The set of toy bricks has difference shapes but identical appearance. The



5.5 Evaluation 110

Fi
gu

re
5.

9:
Fi

lm
st

ri
p

sh
ow

in
g

ou
r

al
go

ri
th

m
tr

ac
ki

ng
tw

o
pi

ec
es

of
sp

on
ge

w
it

h
th

e
ac

cu
ra

te
ob

je
ct

m
od

el
s.

R
ow

1,
2

sh
ow

th
e

co
lo

ur
an

d
th

e
de

pt
h

im
ag

e
in

pu
ts

.
R

ow
3

sh
ow

s
th

e
pe

r-
pi

xe
lf

or
eg

ro
un

d
pr

ob
ab

ili
ty

P
f.

R
ow

4
sh

ow
s

th
e

pe
r-

pi
xe

lm
em

be
rs

hi
p

w
ei

gh
t

w
i,

m
ag

en
ta

an
d

cy
an

co
lo

ur
co

rr
es

po
nd

to
th

e
tw

o
ob

je
ct

s,
th

e
bl

ue
co

lo
ur

ed
pi

xe
ls

ar
e

w
it

h
am

bi
gu

ou
s

m
em

be
rs

hi
p.

In
ro

w
5,

w
e

sh
ow

th
e

tr
ac

ki
ng

re
su

lt
.W

ho
le

se
qu

en
ce

se
e

V
id

eo
B.

3
in

A
pp

en
di

x
B.



5.5 Evaluation 111

Fi
gu

re
5.

10
:F

ilm
st

ri
p

sh
ow

in
g

ou
r

al
go

ri
th

m
tr

ac
ki

ng
a

ba
ll

an
d

a
cu

p
w

it
h

th
e

ac
cu

ra
te

ob
je

ct
m

od
el

s.
R

ow
1,

2
sh

ow
th

e
co

lo
ur

an
d

th
e

de
pt

h
im

ag
e

in
pu

t.
R

ow
3

sh
ow

s
th

e
pe

r-
pi

xe
lf

or
eg

ro
un

d
pr

ob
ab

ili
ty

P
f.

R
ow

4
sh

ow
s

th
e

pe
r-

pi
xe

lm
em

be
rs

hi
p

w
ei

gh
t

w
i,

m
ag

en
ta

an
d

cy
an

co
lo

ur
co

rr
es

po
nd

to
th

e
tw

o
ob

je
ct

s,
th

e
bl

ue
co

lo
ur

ed
pi

xe
ls

ar
e

w
it

h
am

bi
gu

ou
s

m
em

be
rs

hi
p.

In
ro

w
5,

w
e

sh
ow

th
e

tr
ac

ki
ng

re
su

lt
.W

ho
le

se
qu

en
ce

se
e

V
id

eo
B.

3
in

A
pp

en
di

x
B.



5.5 Evaluation 112

Fi
gu

re
5.

11
:F

ilm
st

ri
p

sh
ow

in
g

ou
r

al
go

ri
th

m
tr

ac
ki

ng
tw

o
in

te
ra

ct
in

g
ha

nd
s

w
it

h
tw

o
in

ac
cu

ra
te

m
od

el
s.

R
ow

1,
2

sh
ow

th
e

co
lo

ur
an

d
th

e
de

pt
h

im
ag

e
in

pu
t.

R
ow

3
sh

ow
s

th
e

pe
r-

pi
xe

lf
or

eg
ro

un
d

pr
ob

ab
ili

ty
P

f.
R

ow
4

sh
ow

s
th

e
pe

r-
pi

xe
lm

em
be

rs
hi

p
w

ei
gh

t
w

i,
m

ag
en

ta
an

d
cy

an
co

lo
ur

co
rr

es
po

nd
to

th
e

tw
o

ob
je

ct
s,

th
e

bl
ue

co
lo

ur
ed

pi
xe

ls
ar

e
w

it
h

am
bi

gu
ou

s
m

em
be

rs
hi

p.
In

ro
w

5,
w

e
sh

ow
th

e
tr

ac
ki

ng
re

su
lt

.W
ho

le
se

qu
en

ce
se

e
V

id
eo

B.
3

in
A

pp
en

di
x

B.



5.5 Evaluation 113

Fi
gu

re
5.

12
:

Fi
lm

st
ri

p
sh

ow
in

g
ou

r
al

go
ri

th
m

tr
ac

ki
ng

tw
o

in
te

ra
ct

in
g

fe
et

w
it

h
tw

o
in

ac
cu

ra
te

m
od

el
s.

R
ow

1,
2

sh
ow

th
e

co
lo

ur
an

d
th

e
de

pt
h

im
ag

e
in

pu
t.

R
ow

3
sh

ow
s

th
e

pe
r-

pi
xe

lf
or

eg
ro

un
d

pr
ob

ab
ili

ty
P

f.
R

ow
4

sh
ow

s
th

e
pe

r-
pi

xe
lm

em
be

rs
hi

p
w

ei
gh

t
w

i,
m

ag
en

ta
an

d
cy

an
co

lo
ur

co
rr

es
po

nd
to

th
e

tw
o

ob
je

ct
s,

bl
ue

co
lo

ur
ed

pi
xe

ls
ar

e
w

it
h

am
bi

gu
ou

s
m

em
be

rs
hi

p.
In

ro
w

5,
w

e
sh

ow
th

e
tr

ac
ki

ng
re

su
lt

.T
he

tr
ac

ke
r

fa
ile

d
on

th
e

fr
am

es
of

co
lu

m
n

4
an

d
6

bu
tfi

na
lly

re
co

ve
re

d
on

th
e

fr
am

es
of

co
lu

m
n

7.
W

ho
le

se
qu

en
ce

se
e

V
id

eo
B.

3
in

A
pp

en
di

x
B.



5.5 Evaluation 114

Fi
gu

re
5.

13
:

Fi
lm

st
ri

ps
sh

ow
in

g
a

ch
al

le
ng

in
g

se
qu

en
ce

w
he

re
5

pi
ec

es
of

to
y

br
ic

ks
w

it
h

id
en

ti
ca

l
co

lo
ur

ar
e

tr
ac

ke
d.

Th
e

to
p

se
qu

en
ce

sh
ow

s
th

e
tr

ac
ki

ng
re

su
lt

re
nd

er
ed

on
th

e
co

lo
ur

im
ag

e
an

d
th

e
se

qu
en

ce
be

lo
w

sh
ow

s
th

e
or

ig
in

al
co

lo
ur

im
ag

es
.

O
ur

m
ul

ti
-o

bj
ec

t
tr

ac
ke

r
m

an
ag

e
to

tr
ac

k
th

ro
ug

h
th

e
w

ho
le

se
qu

en
ce

w
it

ho
ut

tr
ac

ki
ng

fa
ilu

re
.

W
ho

le
se

qu
en

ce
se

e
V

id
eo

B.
3

in
A

pp
en

di
x

B.



5.6 Conclusions 115

top sequence shows the tracking result and the bottom sequence shows the original

colour input. In spite of the heavy self-occlusion and the occlusion introduced by

hands, the multi-object tracker is able to track robustly.

5.6 Conclusions

This Chapter has presented a novel framework for tracking multiple 3D objects

from a sequence of RGBD images. The formulation has several advantages over

instantiating multiple individual trackers, both from a theoretical point of view

and from a practical one. First, our method is particularly well suited to tracking

several objects with similar or identical appearance, which is a common case in

many applications, such as tracking cars or pairs of hands or feet. Our method

is grounded in a rigorous probabilistic framework, so we naturally obtain weights

that indicate the probability of individual image observations being generated by

each of the tracked objects, thus implicitly solving the data association problem.

Furthermore, our formulation naturally leads to what we call a physical constraint

term, which allows us to specify prior knowledge about the world. We have used

this term to indicate that it is unlikely that several objects occupy the same locations

in 3D space. In addition to collision avoidance, the formulation would allow for

generic interaction forces between objects to be modeled.

We validate our claims with several experiments, showing that the combined

tracking of multiple objects exhibits superior performance over instantiating the

same tracker multiple times independently. For this evaluation we used an imple-

mentation that easily tracks multiple objects at 30 Hz without the use of any GPU

acceleration. Our system is therefore well suited for real time applications.

Since our tracker is region-based and currently uses simple histograms as ap-

pearance models, it is particularly well suited to objects where the texture is unin-
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formative. A possible direction of research is to transfer our tracking framework to

different appearance models, such as texture-based models. In line with other mod-

el based 3D trackers our approach currently also requires 3D models of the tracked

objects to be known and given to the algorithm. While we do explicitly show good

performance even with crude and inaccurate models, this might be considered an-

other shortcoming to be resolved in future work. In particular dynamic objects,

such as hands, could be an interesting direction, since tracking individual fingers

might greatly benefit from a tracker that can deal with near-identical appearance

and nicely integrated physical constraints.



6

Shape Regression for Online
Segmentation and Tracking

We propose a novel regression based framework that uses online learned shape

information to recover occluded 2D object contours. Our key insight is to

regress the global, coarse, properties of shape from its local properties, i.e. it-

s details. We do this by representing shapes using their 2D discrete cosine

transforms and by regressing low frequency from high frequency harmonics.

We learn this regression model using Locally Weighted Projection Regression

(LWPR) which expedites online, incremental learning. After sufficient obser-

vation of a set of unoccluded shapes, the learned model can detect occlusion

and recover the full shapes from the occluded ones. We demonstrate the ideas

using a level-set based tracking system that provides shape and pose, however,

the framework could be embedded in any segmentation-based tracking system.

Our experiments demonstrate the efficacy of the method on a variety of objects

using both real data and artificial data. A previous version of this work has

been published by Ren et al. [116, 111]
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Figure 6.1: Left: full human shape, from which we learn the relationship between local
properties and global ones. Middle & Right: when occlusion happens, we can reconstruct
the global shape from observed local properties based on the learnt relationship. (This an
illustrative example of our idea, for real examples, please refer to Fig. 6.7 and Fig. 6.6)

6.1 Introduction

In the previous chapters, we discussed the use of implicit shape representations

(e.g. SDFs) for real-time 3D tracking and reconstruction from RGB-D data. In this

chapter, we further explore the possibility of using implicit shape representations

for real-time 2D tracking, segmentation and occlusion detection & recovery with

only RGB image input.

In the field of 2D tracking, there has been substantial research in segmentation

based tracking, in such works as Yilmaz et al. [147], Bibby and Reid [13], Mirmehdi

et al. [89], etc.. These methods extract an active contour at each frame and use it to

update the shape of a tracked object. Such methods result in the efficient tracking of

previously unseen objects. However, a challenge that remains is occlusion, because,

unless the tracked shape is constrained in some way, the resulting contour will have

an incorrect shape. Our aim in this chapter, then, is to show how to learn the set

of legal shapes of a potentially deformable object incrementally and online and then

use this learned model to detect occlusion and recover the original shape of the
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object at each frame.

We consider the problem of occlusion detection and shape recovery by modeling

the relationship between the local and global properties of shape. The motivation

behind our idea is illustrated in Fig. 6.1, where we show an occluded human (with

only the legs visible). Even though the bulk of the person is occluded, a human

observer can reconstruct the shape (i.e. the global property) from the relationship

between the hands, arms, legs etc. (i.e. the local properties). We describe a method

to formalize this insight by learning the relationship between the local and global

properties of shapes. Specially, we show how Locally Weighted Projection Regres-

sion (LWPR Vijayakumar et al. [142]) can be used to learn a regression from the

high frequency harmonics to the low frequency ones of a shape, and how this re-

gression can be used to detect and recover occlusions on previously seen shapes.

We link our shape regression to the pixel-wise posteriors (PWP) level set-based

tracker of Bibby and Reid [13]. The PWP tracker obtains the target pose (a 6 DoF

2D affinity or 4 DoF 2D similarity transform) and figure/ground segmentation at

each frame. We use the pose obtained from the tracker to align the shapes and then

add them to the learning framework, as they are received. After a burn-in period,

the framework is able to recover occluded shapes at real time.

The remainder of the chapter is structured as follows: we begin in Section 6.2

by reviewing some related work, then in Section 6.3 detail our occlusion detection

and shape regression framework. Specifically, in §6.3.1 we discuss the discrete

cosine transform shape representation and its advantages. In §6.3.2, §6.3.3 and

§6.3.4 we detail the LWPR-DCT algorithm and describe how we detect occlusion,

discriminate between occlusion and a new shape, and recover occluded shapes.

We show qualitative and quantitative evaluations of our method in Section 6.4, and

conclude in Section 6.5.
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6.2 Related works

Due to the importance of occlusion reasoning in visual tracking, there has been

substantial related research in various aspects, however, there are very few general

frameworks to identify occlusion explicitly. Many appearance-based tracker solve

the occlusion problem directly by statistical analysis. In Jepson et al. [54], Han

and Davis [47] and Ross et al. [118], the authors learn an adaptive appearance

model online, but when long-term occlusion occurs, the appearance models can

be easily contaminated due to the blind update strategies. In Adam et al. [6]

and Chockalingam et al. [26], the target is decomposed into multiple components

or patches, and occlusion is implicitly reasoned by robust statistics. In the more

recently work of Kwak et al. [66], the authors divide the object into several cells

and train a classifier using patch likelihood. This way, they are able to explicitly

detect occlusion efficiently, thus, improve the accuracy of tracking. However, all

the works above are based on object appearance models, which does not explicitly

model the object shape, and in presence of occlusion, they are unable to recover the

complete shape of the object.

A typical solution to recover the complete shape in the presence of occlusions

is to put constraints on the minimization of the level set energy function. Such

methods roughly fall into two categories: the first category comprises of methods

which try to capture the variance in the space of legal embedding functions (e.g.

Leventon et al. [74], Tsai et al. [136], Rousson and Paragios [120], Cremer et al. [34],

Dambreville [36], Prisacariu and Reid [105]). This was first attempted by Leventon

et al. [74], where PCA was used to learn the space of zero level set embedding

functions. To segment the image, the contour was evolved by minimising an energy

function which combined three terms, one for the image data, one for the shape

and one for the pose. The minimisation sought alignment of the curve with the

image gradients, while at the same time maximising the probability of the shape.
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Replacing edges with regions as the main source of image information, the method

of Leventon et al. [74] was extended by Tsai et al. [136]. Here PCA is again used on

level set functions, but the energy function can be, for example, the region based

one of Vese and Chan [141]. The minimisation is done directly in the shape space

i.e. by differentiation with respect to the position in the lower dimensional latent

space and the 2D pose. Nonlinear dimensionality reduction was used first by Rathi

et al. [109] and Dambreville et al. [36], in the form of Kernel PCA (Schölkopf et

al. [124]). This has been shown to greatly improve the learning capabilities of the

shape space. Here a segmentation quality measure is maximised in the space of

embedding functions, aiming to minimise the distance between the projection of

those embedding functions and the known lower dimensional latent points. The

opposite is true for Prisacariu and Reid [105, 104], where the optimisation process is

kept in the lower dimensional space and a closed form generative process is used to

generate high dimensional shapes. This is achieved by replacing Kernel PCA with

Gaussian Process Latent Variable Models (Lawrence [71]). Prisacariu and Reid [104]

represent shapes explicitly using elliptic Fourier descriptors (Kuhl and Giardina

[64]) and generate the level set embedding functions at runtime, whereas Prisacariu

and Reid [105] learn spaces of level set embedding functions directly, compressed

using the discrete cosine transform (DCT, Watson [143]). All of the above presented

methods are robust to occlusions, since the evolution of the contour is limited to

the space of possible shapes. None of them however explicitly considers occlusion

modelling or recovery. Furthermore, inference tends to be very slow (in the order of

seconds or minutes per frame) and training is always done off-line. This means that,

when new contours are added, the whole model must be re-trained, an operation that

can take up to several hours.

The second school of methods attempts to influence the shape in the current

frame by comparing it with a number of recently observed shapes. Mirmehdi et

al. [89] proposed to incrementally build a dynamic space of good shape hypothe-
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Figure 6.2: An overview of our whole shape recovery algorithm.

ses from all frames leading up to the current one. The shape of the current frame

is thus constrained by minimizing its distance from a locally Gaussian weighted

shape expectation of the learned space. By continually updating a weight matrix,

this method can incrementally update the space of good shapes without re-training.

However, in practice, (i) both the size of the weight matrix and the time it takes to

update it grows as n2 (where n is the number of observed good shapes), and (ii)

in order to keep track of this matrix, all previously observed shapes need to be

stored. Alternatively, when using a fixed size weight matrix, the method suffers

from rapid forgetting. The authors also note that this method is very slow, making

it unsuitable for real-time operation. In another work, Yilmaz et al. [147], a dense

level set function is embedded in the shape, with the background area set to zero.

A probability distribution for each grid point on the level set is modelled with a

single Gaussian, which is updated only where no occlusion is present. Once occlu-

sion is detected (using area and distance heuristics), the method uses the Gaussian

model on each grid point to cast an expansion force on the level set, to recover the

missing parts. However, the updating rate is difficult to tune when the shape of

a deformable object is learned: updating too quickly will result in recovering the

current shape simply based on the previous few shape, while updating too slowly

will suffer from large uncertainty.
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3 harmonics 9 harmonics 15 harmonics 21 harmonics 27 harmonics 

Figure 6.3: Using a different number of harmonics to approximate shape: as the number
of harmonics that are used to encode the shape increases, more details of the shape are
captured. Only the first few tens of harmonics are sufficient to recover full information of
the shape, higher frequency harmonics contains more image noise than information of the
shape.

6.3 Shape regression for online segmentation and track-

ing

6.3.1 Shape representation via DCT

The 2D discrete cosine transform (DCT, Watson [143]) is a special case of the dis-

crete Fourier transform, which represents an image using a series of orthogonal

cosine basis functions known as harmonics, each with its own frequency and am-

plitude. A common use for the DCT is image compression, it being the basis for

the JPEG format. Similarly, in Prisacariu and Reid [105], the authors used it to

compress level set embedding functions. Our work is based on a different property

of the DCT, namely the fact that the low frequency harmonics contain the coarse

“bulk” properties of the information in the signal, while high frequency ones con-

tain the “details”. When applied to shapes, this means that, often, when an object

is occluded, parts of its main body may be missing, but many high frequency de-

tails remain. Our experiments suggest that occlusions introduce relatively minor

changes to the high frequency DCT coefficients. Based on this observation, we train

a regression model from higher frequency harmonics to lower frequency harmon-
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ics using previously observed complete shapes. Thus, when an occluded shape is

observed, we extract its high-frequency harmonics and use the regressor to deter-

mine the expected low frequency harmonics, and hence recover the whole shape

by adding the low frequency harmonics to the high frequency ones. Fig. 6.2 gives

an overview of our framework.

The 2D DCT of a N × N image is defined as:

C(u, v) = α(u)α(v)
N−1

∑
x=0

N−1

∑
y=0

f (x, y) cos
[

π(2x + 1)u
2N

]
cos

[
π(2y + 1)v

2N

]
(6.1)

for u, v ∈ 0, 1, 2, . . . , N − 1, α(u) and α(v) are defined as:

α(u) =


√

1
N for u = 0√
2
N for u ̸= 0

(6.2)

(6.3)

The inverse transform is defined as:

f (x, y) =
N−1

∑
x=0

N−1

∑
y=0

α(u)α(v)C(u, v) cos
[

π(2x + 1)u
2N

]
cos

[
π(2y + 1)v

2N

]
(6.4)

for x, y ∈ [0, . . . , N − 1]. Since the basis functions are orthogonal, the coefficients

can be computed independently, as above. The transform yields a natural hier-

archical representation of the original image in which the top-left, low frequency

coefficients in the DCT capture the overall signal, while the high frequency coeffi-

cients (further away from top-left) capture the details of the image .

We use the DCT to represent a silhouette mask image, i.e. a binary image of

the figure/ground segmentation, with 1 for foreground and -1 for background.

This is in contrast with works such as Prisacariu and Reid [105] where the DCT is

computed from the level set (SDF) embedding function. Our representation insures
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that the high frequency harmonics capture variability in the contour rather then, for

example, in the structure of the level set embedding the contour.

Note that, the first several tens of harmonics are sufficient to recover the whole

shape, very high frequency harmonics contains far more noise than information

of the shape. For example, as is shown Fig. 6.3, when we increase the number

of harmonics from 3 to 15, we observe significant increase in the shape detail,

however, from 15 to 27, very little detail information is added to the recovered

shape. Thus, we use only 10-15 DCT harmonics (depending on complexity of the

shape) to encode the shape, and divide the selected harmonics into low-frequency

ones and high frequency ones. Taking the inverse DCT transform of the selected

harmonics then thresholding at zero yields an approximation for the silhouette.

6.3.2 Locally Weighted Projection Regression(LWPR)

In this work we aim to recover the missing part of a shape in a discriminative

manner, by using an online trained regression (as opposed to learning a genera-

tive shape space) from the high frequency DCT coefficients to the low frequency

ones. We therefore need to learn an incremental approximation of a highly non-

linear and high dimensional function. Established methods for fitting non-linear

functions globally already exist, a few examples being Support Vector Machine Re-

gression (SVMR, Smola and Schölkopf [132]), Gaussian Process Regression (GPR,

Rasmussen [108]) and Variational Bayes Mixture Models (VBM, Corduneanu and

Bishop[32]). These methods are however not generally suited for online learning

in high dimensional spaces. First, they require a priori determination of the right

function space, in terms of basis or kernel functions (GPR, SVMR) or number of

latent variables (VBM). Second, all these methods are developed primarily for off-

line batch training, rather than for incremental learning. For instance, in the case of

SVMR, when a new training point is added, the outcome of the global optimisation
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Table 6.1: Legend of indexes and symbols used

Notation Affectation
M No. of training data points
N Input dimensionality (dim of xhf )
H Output dimensionality (dim of xlf )
k = 1 : K No. of local models
r = 1 : R No. local projections in each local model
{xhf

i , xlf
i }

M
i=1 Training data

{xlf
i,j}

H
j=1 Element of xlf

i

{si}M
i=1 Lower dim projection of input data xhf

i
{si,r}R

r=1 Element of si
e Prediction error in LWPR
{ej}H

j=1 Elements of e
ck Field centre of the k-th Receptive Field
Dk Distance metric of the k-th Receptive Field
{un

r }R
r=1 The r-th projection of a local model after observ-

ing n training point (local model index omitted)
{βn

r }R
r=1 The weight for the r-th projection of a local mod-

el model after observing n training point (local
model index omitted)

(an
0 , βn

0) The means of input and output of a local regres-
sion model after n training points.

wk Activation of the k-th RF as in Eqn.6.5
Wn

k Cumulative weights of the k-th RF after n training
points

{SSn
r , SRn

r , SZn
r }R

r=1 Trace variables for the incremental computation
of the r-th local regression after seeing n training
points

can be changed greatly.

We use Locally Weighted Projection Regression (LWPR, Vijayakumar et al. [142])

as our regression model. LWPR is a nonlinear function approximator that learns

rapidly from incrementally acquired data, without needing to store the training

data. The computational complexity grows linearly with the number of inputs.

LWPR can also deal with a large number of possibly redundant inputs, which is

often the case when tracking rigid objects.

Each processing unit in LWPR is a multi-input, single-output regression model.
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We therefore use multiple processing units to formulate our multi-input, multi-

output shape regression (LWPR-DCT model). LWPR is based on the hypothesis

that high dimensional data are characterised by locally low-dimensional distribu-

tions. A learned LWPR unit has K local models, each comprising a Receptive Field

(RF) characterised by: (1) a field centre ck; (2) a positive semi-definite distance met-

ric Dk that determines the size and shape of the neighbourhood contributing to the

local model and (3) a local projection regression model (a modified version of par-

tial least squares) characterised by a set of projections and their respective weights.

In the following sections, we detail how we learn a LWPR-DCT model from a set

of training shapes and use the learnt model to detect and recover occluded shapes.

6.3.3 Incremental online learning with LWPR

The notations used in this and the following sections are listed in Table 6.1. The

learning algorithm of a single LWPR unit is summarised in Table 6.2. The learning

of a LWPR unit comprises (1) the incremental computation of projections and re-

gressions in each local models and (2) the adjustment of the shapes and the sizes of

the receptive fields (RFs). We start with the algorithm for updating the projections

and regressions in each local model. Initialized with no RF, when a training shape

is observed, we compute its high frequency and low frequency DCT coefficients

as input and output to LWPR. Given a set of high frequency DCT coefficients xhf
i ,

each local model in a LWPR unit computes a RF weight, which is also known as

the activation:

w = exp
{
−1

2
(xhf

i − c)TD(xhf
i − c)

}
(6.5)

where we omitted the local model index k for clarity.

If no RF is activated by more than wgen, a new RF centered at xhf
i will be created

with the initial distance metric Ddef and two projections. wgen ≤ 1 is a threshold

that determines the distance between different RFs: the closer wgen is set to 1, the
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Figure 6.4: Structure and work flow of LWPR, inspired by Fig. 3 in Vijayakumar et al.
[142].

Table 6.2: Pseudo code for the learning of LWPR-DCT model.

• Initialize the LWPR with no receptive field (RF).
• For the i-th training shape Φi
◦ compute the first (N + H) DCT coefficients of Φi

⋆ Use No. 1 ∼ H coefficients as output xlf
i

⋆ Use No. (H + 1) ∼ (N + H) coefficients as input xhf
i .

◦ For the k-th out of K existing RFs:
⋆ Calculate the activation using Eqn. 6.5.
⋆ Update the k-th local regression model.
⋆ Update the distance metric Dk
⋆ Check the decreasing rate of MSE at each projection to

see if the number of projections needs to be increased.
◦ If no RF was activated by more than wgen:
⋆ Create a new RF with initial number of projections R = 2

cK+1 = xhf
i and DK+1 = Ddef , K ← K + 1.
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more overlap local models will have. Ddef is a diagonal Gaussian distance metric,

which determines the initial shape of the RF.

Each local model is initialized with input mean a0
0 = 0, output mean β0

0 = 0 and

weight W0 = 0. With new training data (xhf
i , xlf

i,j), these are updated as:

Wn+1 = λWn + w (6.6)

an+1
0 = (λWnan

0 + wxhf
i )/Wn+1 (6.7)

βn+1
0 = (λWnβn

0 + wxlf
i,j)/Wn+1 (6.8)

Each LWPR local regression model is an incremental locally weighted version of

partial least squares, parametrised by a set of projections {ur}R
r=1 and correspond-

ing weights {βr}R
r=1. Given new training data (xhf

i , xlf
i,j), the local regression models
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in the j-th LWPR unit are updated as follows:

Initialize: z = xhf
i − an+1

0 , res1 = xlf
i,j − βn+1

0

For r = 1 : R

1. si,r = zTun
r /
√

un
r

Tun
r (6.9)

2. SSn+1
r = λSSn

r + w s2
i,r

3. SRn+1
r = λSRn

r + w si,r resr

4. SZn+1
r = λSZn

r + w z si,r

5. un+1
r = λun

r + w z resr

6. βn+1
r = SRn+1

r /SSn+1
r

7. pn+1
r = SZn+1

i /SSn+1
r (6.10)

8. z = z− si,r pn+1
r

9. resr+1 = resr − si,rβn+1
r

10. MSEn+1
i = λMSEn

i + w res2
r+1 (6.11)

ej = resR+1 (6.12)

where the variables SS, SR, SZ are sufficient statistics that enable use to perform

incremental regression learning without the need to explicitly store any training

data. λ ∈ [0, 1] is a forgetting factor that allows exponential forgetting of old data

in the sufficient statistics.

The learning algorithm has a simple mechanism to determine whether the num-

ber of projections in a local model needs to be increased by recursively keeping

track of the mean-square error (MSE, as recursively computed in Eqn. 6.11) as a

function of the number of projections. The algorithm stops adding new projec-

tions if the MSE at next added projection does not decrease more than a certain

percentage of the previous MSE (i.e. MSEi+1/MSEi > ϕ).
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The distance metric D, which describes the locality of the receptive fields, can

be learnt for each local model individually by stochastic gradient descent in a pe-

nalized leave-one-out cross validation cost function (indicated by the subscript −i):

J =
1

∑M
i=1 wi

M

∑
i=1

wi(xlf
i − x̂lf

i,−i)
2 +

γ

N

N

∑
i,j=1

D2
ij (6.13)

where M denotes the number of training shapes, N is the number of RFs. γ is a

trade-off parameter that can be determined empirically and the output dimension

index j has been omitted for clarity.

Minimisation of Eqn. 6.13 can be accomplished in a incremental way (without

the need to store any training data) as well. Vijayakumar et al. [142] proposed to

expend Eqn. 6.13 with the PRESS residual error and formulated J in terms of the

projected inputs si = [si,1...si,R]
T in Eqn. 6.9:

J =
1

∑M
i=1 wi

M

∑
i=1

wi(xlf
i − x̂lf

i )
2

(1− wisi
TPssi)2 +

γ

N

N

∑
i,j=1

D2
ij (6.14)

where Ps corresponds to the inverted weighted covariance matrix of the projected

input si for R = N. Given object function Eqn. 6.14, the distance metric D is learnt

by gradient descent:

Mn+1 = Mn − α
∂J

∂M
where D = MTM (6.15)

where M is a upper triangular matrix from a Cholesky decomposition of D. For

further details on the proof and derivation of Eqn.6.14 and Eqn. 6.15, the interested

reader is referred to Appendix B in Vijayakumar et al. [142].
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6.3.4 Shape Regression with LWPR-DCT

In real world applications, the proposed LWPR-DCT learning framework requires a

‘burn-in’ period to acquire un-occluded shapes as training data. During this period

we assume the shapes adopted by an object to be un-occluded and aligned by the

PWP tracker of Bibby and Reid [13]. We then transform the observed shapes into

high frequency and low frequency DCT coefficients (xhf
obs, xlf

obs) and train a LWPR

on this sequence of shapes. Once the LWPR model has been learnt, we can use it

to detect occlusion in the shape as well as recover the original un-occluded shape.

Fig. 6.4 shows the prediction workflow of a single LWPR processing unit. Given

a set of novel input harmonics xhf , the prediction from a single local model follows

the standard partial least squares regression:

Initialize: x̂lf = β0, z = xhf − a0 (6.16)

For r = 1 : R (6.17)

1. s = uT
r z (6.18)

2. x̂lf = x̂lf + βr s (6.19)

3. z = z− s pr (6.20)

where pr is computed using Eqn. 6.10 and the local model index k omitted for

clarity. The final output (i.e. a single low frequency DCT coefficient) is given by

the weighted mean of all K local outputs:

x̂lf =
∑K

k=1 wk x̂lf
k

∑K
k=1 wk

(6.21)

where wk is the RF weight computed using Eqn. 6.5. Note that, since each LWPR

unit is an multi-input, single-output regression model, we have the number of

LWPR units equal to the number of output dimensions.
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Table 6.3: Pseudo code for the occlusion detection and recovery using learnt LWPR-DCT
model.

Given an observed shape Φobs
◦ compute the first H DCT coefficients of Φobs:
⋆ Use No. 1 ∼ (H − N) coefficients as xlf

obs.
⋆ Use No. (H − N + 1) ∼ H coefficients as xhf

obs.
◦ count = 0 (# of ‘Active’ LWPR units)
◦ For the i-th out of (H − N) LWPR units:
⋆ Calculate the activations for all local models with Eqn 6.5.
⋆ If any local model is activated more than wgen:

-Label this LWPR unit as Active.
-count← count + 1

◦ If count ≥ (H − N)/2 (more than half of the unites are activated):
⋆ Predict the low frequency harmonics x̂lf using learnt LWPR
⋆ If ∥x̂lf − xlf

obs∥
2 ≥ 2∥e∥2

-Shape occluded, recover shape by replacing xlf
obs with x̂lf .

else
-Shape is not occluded.

else
⋆ The high frequency details have not been learnt, stop.
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The occlusion detection and shape recovery mechanism of LWPR-DCT is sum-

marised in Table 6.3: when a new shape is observed, we first compute the activation

of all local models in each LWPR unit using Eqn. 6.5. If any RF in a LWPR unit

has been activated by more than wgen we label this LWPR unite as ‘Active’. If the

number of ‘Active’ LWPR units is larger than 50% of the overall number of LWPR

unites, we believe the details of the shape to have been learnt before, otherwise,

we classify the shape as ‘not learnt’ and proceed no further. For a shape whose

details have been learnt, the system then makes a prediction of the low frequency

components for the shape and calculate the difference between the prediction x̂lf

and the observed low frequency harmonics xlf
obs. If the difference is smaller than

twice the prediction error e (Eqn. 6.12) of the learnt LWPR-DCT model, we consid-

er the shape as ‘not occluded’ and leave the tracker output unchanged. Otherwise,

we classify the shape as being known but occluded and update it according to our

prediction.

6.4 Experiments and performance analysis

We tested our method both qualitatively and quantitatively, on several video se-

quences and data sets. We used an Intel Core i7-870 (2.93GHz) machine to run all

our experiments. We denote our method with LWPR-DCT.

We begin with the qualitative analysis. Examples of successful shape recovery

using artificially generated occlusions are shown in Fig. 6.5. The images on the left

of each column show the shape approximation using the inverse of the truncated

DCT (red → 1, blue → -1). The images on the right show the recovered shape by

thresholding the images on the left at zero level. We show the original silhouette in

the left two columns, the occluded silhouette in the middle two columns and the

recovered silhouette in the right two columns. The results show that LWPR-DCT



6.4 Experiments and performance analysis 135

Original 
Shape

After 
Thresholding

Occluded 
Shape

After 
Thresholding

Recovered 
Shape

After
Thresholding

Figure 6.5: Examples of recovered shapes from artificially occluded images. The left
column of each pair shows false color images(blue=-1, red=1) of the inverse “truncated
DCT” (i.e.. the approximation of the silhouette via the first 10 to 15 harmonics), while the
right column shows the silhouette obtained from thresholding the approximation at zero.
From top row to bottom row: Cat running, Man walking , Hand, Woman jumping

Figure 6.6: Example frames from a video tracking a car, comparing our method to the
PWP tracker of [13]. When the car is not occluded both methods produce similar results.
When the tree is in front of the car the segmentation produced by the PWP tracker is
corrupted, while the one produced by our tracker is not.
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Figure 6.7: Example frames from a video tracking a hand, comparing our method to the
PWP tracker of [13]. When no occlusions are present, both method produce similar results.
However, as soon as the hand is occluded, the PWP tracker produces an incorrect segmen-
tation, while our method still generates correct contours. Whole sequence see Video B.4 in
Appendix B.

Occluded
Shape

After
Thresholding

Original
Shape

Recovered
Shape

After
Thresholding

After
Thresholding

Figure 6.8: Example failure cases (from the hand video). Top line fails because noisy high
frequency harmonics are introduced, while bottom line fails because details are missing.
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is capable of recovering the shape in the presence of various types of artificially

introduced occlusion.

In Fig. 6.7 and Fig. 6.6, we compare our algorithm to the standard pixel-wise

posteriors (PWP) tracker of Bibby and Reid [13] on real video sequences and show

that we are able to successfully recover the correct contour, in the presence of

heavy occlusions. In the first 2 frames of Fig. 6.7 there are no occlusions, so both

LWPR-DCT and the standard PWP tracker yield similar results. When the hand is

occluded, in the other 4 frames, the output segmentations of the PWP tracker are

corrupted, while ours are still correct. Similarly in Fig. 6.6, in the presence of the

occlusion introduced by the tree, our LWPR-DCT framework can still recover the

learnt car shape.

We show two failure cases of our method in Fig. 6.8. The failure modes are p-

resented using artificially introduced occlusions. LWPR-DCT can fail in two ways.

First, when too many small occlusions are present, the high frequency DCT har-

monics may be affected, as is shown in the upper row of Fig. 6.8. The failure here

happens because the input to LWPR-DCT has been changed considerably by the

occlusions. In real world applications, this case is usually observed when the object

being tracked is behind a fence or occluded by several small objects. The second

failure case happens when too much detail is occluded, as is shown in the lower

row of Fig. 6.8. This happens because the high-frequency DCT harmonics, which

we rely on, are missing. Note that, in both failure cases, the input occluded shapes

may be classified as ‘not learnt’ in the occlusion detection stage, however, this is

not guaranteed, thus LWPR-DCT might produce incorrect results.

We designed three sets of experiments to evaluate our LWPR-DCT framework

quantitatively. First we measure the effectiveness of the shape recovery using

LWPR-DCT and show how many high frequency harmonics are required as in-

put for occlusion recovery. We then evaluate the effectiveness of occlusion detec-
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Figure 6.9: Shape recovery performance evaluation of LWPR-DCT on four datasets using
a different number of harmonics as input and output.
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tion with LWPR-DCT using a different number of input harmonics. Finally, we

compare our algorithm with a state-of-the-art shape prior based method of [105]

(denoted by GPLVM-DCT) on the performance of occlusion recovery and average

processing time.

For the first two experiments, we used four datasets to evaluate the effectiveness

of LWPR-DCT: Cat running (artificial video with few distinct poses, 398 frames),

Woman jumping (real video with an average number of distinct poses, 410 frames),

Man walking (real video with many distinct poses, 411 frames, the subject 2 walk

of the HumanEva I dataset of Sigal et al. [129])) and Hand (real video with many

distinct poses, 408 frames). For each video, all frames are segmented and aligned

using the PWP tracker, then added to LWPR-DCT as training data. We then add

different sizes of artificial occlusions (where each occlusion is rectangular and in

a random location) to each frame. We chose to generate occlusions artificially

in order to be able to control the percentage of occlusion and to have accurate

knowledge of the ground truth. For each frame, we generate 7 levels of occlusion,

ranging from 0.1 (10%) to 0.8 (80%).

In the first test, we use the overlap rate R =
Sgt

∩
Srcv

Sgt
∪

Srcv
as our performance crite-

ria, where Sgt is the ground truth shape and Srcv is the recovered shape. We use

the first 10 harmonics to approximate the segmented shapes and run tests on all

possible combinations of the numbers of input and output harmonics (harmonic

10 generating 1 to 9, 9 and 10 generating 1 to 8, etc.). Fig. 6.9 shows the results.

Our method gives sensible results just by using the 10-th harmonic to regress all

1∼9 harmonics. Using the harmonics 8∼10 to regress harmonics 1∼7 or 9∼10 to

1∼8 gives the best performance in all cases. Performance decreases again as we

increase the number of known harmonics. This happens because we are using too

many low frequency harmonics as high frequency input, and such input as been

corrupted by occlusion.
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Figure 6.11: Comparing LWPR-DCT to GPLVM-DCT on recovery performance.
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Occlusion rate 0.2927 0.3896 0.4947 0.6012 0.7042 0.8082 0.9409
GPLVM-DCT (s/frame) 2.6301 2.9180 3.0261 3.2784 3.5733 3.6994 3.9663
LWPR-DCT (s/frame) 0.0378 0.0380 0.0382 0.0381 0.0381 0.0379 0.0382

Table 6.4: Comparing LWPR-DCT to GPLVM-DCT on processing time

In the second test, we use the same training and test set as the first experiment,

but in the testing set, we also added the original un-occluded shapes. We eval-

uate the effectiveness of our occlusion detection method by tracking the average

precision and recall on all four data sets. We use the first 10 harmonics to ap-

proximate the shapes and run tests on all train–test combinations to see how many

input/output harmonics are needed to obtain the best result. Note that, given the

observed shape has been learnt before (Table 6.3), the occlusion detection in LWPR-

DCT relies on a single threshold parameter, i.e. if ∥x̂lf − xlf
obs∥

2 ≥ 2∥threshold∥2 the

observed shape will be classified as occluded. We use the prediction error e ob-

tained in the training phase as this threshold (Table 6.3). In this experiment, only

shapes that are detected as occluded are labelled as positive, shapes that are not

learnt and shapes that are detected as un-occluded are labelled as negative. In

Fig. 6.10 we track the precision-recall by varying the threshold. Also, the point

threshold = e is plotted ‘∗’. As is shown in Fig. 6.10, using the harmonics 9∼10 to

regress harmonics 1∼8 gives the best performance. Using the prediction error e as

the threshold also (approximately) gives the best precision-recall on the curve. As

we increase the number of input harmonics, the detection performance decreases.

This decrease in performance again shows that occlusions affect the low frequency

harmonics more than the high frequency ones.

In the last quantitative experiment, we compare our algorithm to the shape

prior method of Prisacariu and Reid [105], which generates embedding functions

from a 2 dimensional GPLVM latent space. Here, segmentation (i.e. the recovery

of the unoccluded shape), is an iterative non-linear minimization in the learned

latent space. In our experiment, for each occluded shape, we run three separate
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minimizations, we compute the recovery rate for each resulting shape, and we

take an average of those values. We run multiple minimizations (rather than a

single one) because each one can converge to a different shape, so to accurately

measure the performance of Prisacariu and Reid [105] on our test data we need

to consider all these results. As starting points for the minimization, we use the

three points that generate the shapes most similar to the ground truth from the

previous frame. We run both methods on the training and testing data from the

man walking sequence from last experiment. Fig. 6.11 shows the time consumption

and recovery rate of both methods. As a well trained, shape prior based method,

GPLVM-DCT outperforms our method by an average of 10%. But, as is shown in

the timings chart, the time consumption for LWPR-DCT stays constant at around

35ms per shape, while the processing time required by GPLVM-DCT increases

with the occlusion rate and it is much larger than LWPR-DCT (up to 114 times

higher). This happens because, when using LWPR-DCT, each shape recovery is a

single (closed form) regression, while, in the GPLVM-DCT case, segmentation is an

iterative process with the number of iterations being proportional to the percentage

of occlusion in the image. Note that the GPLVM-DCT timings shown in Fig. 6.11 are

for a single mode search. Since we use three such searches, the actual processing

time per frame it three times as large. In this experiment we used the harmonics

8∼10 to regress the other 1∼7 harmonics. Note that the dot line corresponds to no-

recovery, which, when less then 10% occlusion is introduced, actually has higher

accuracy. This is an artefact caused by the fact that we only use a small number of

DCT harmonics to represent shapes and affects the method of [105] as well. It can

be easily avoided by using more DCT harmonics, at the expense of an increase in

speed and memory usage.
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6.5 Conclusions and discussions

In this chapter, we have presented a novel regression based framework for online

shape learning and recovery. Shapes are represented by discrete cosine transform

harmonics and the set of object shapes is modelled by a regression from the high

frequency harmonics to the low frequency harmonics. Our method incrementally

learns a shape model for an observed object and detects/recovers occlusions in

real time. We integrated our method with a level-set based tracker, but it could be

potentially linked to other types of segmentation and tracking algorithms.

Our method currently has two limitations. First, the DCT representation of

shape is rotation dependent, i.e small rotation change of a shape can make the high

frequency coefficient change greatly, resulting in very different prediction results.

Currently we rely on the PWP tracker, which obtains camera pose and segmenta-

tion at each frame, to align the shapes. Secondly, some special types of occlusion

are very difficult for LWPR-DCT to handle: (1) when noisy high frequency compo-

nents are introduced by small occlusion and (2) when the details of the shape are

occluded. In these two cases, LWPR-DCT might give incorrect predictions, while

(much slower) shape prior based methods would be more applicable.

The chosen learning algorithm LWPR is a very powerful method applied widely

in robotics to learn dynamic models for control(e.g. Kopicki et al. [62], Rusu et al.et

al. [121], yet it has not been frequently applied to the field of computer vision. Ac-

cording to our knowledge, our proposed work is among the first that uses LWPR

for online learning to solve vision problems. Aside from the preliminary version

of our work in Ren et al. [116], the authors of Li et al. [77] use LWPR to learn an

appearance to pose regression and then plug the pose estimator into particle filter

framework for accurate tracking. In Li et al. [76] and Li et al. [78], LWPR is used

to incrementally learn a geometrical model (appearance to object height), which

is later used for removing outliers in the object detection stage. Many features of
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LWPR (for example, not suffering from high-dimension feature space, not assum-

ing the global regression function is linear because it can approximate nonlinear

functions by piecewise linear models and the ability to be updated incrementally

online) have great potential application in real-time, online solved vision problems

and we are keen to explore these potentials much further.

While we have demonstrated the value of LWPR for shape recovery under oc-

clusion, we believe that this general idea has wider applications. For example, we

could consider regressing local appearance to global positions, which would have

similarity to Blaschko et al. [15] and Fritz et al. [44], or more ambitiously regress lo-

cal appearance to global appearance. The method would also extend to 3D shapes

and 3D data.



7

Conclusions, and REWIRE revisited

7.1 Summary

The objective motivation and applied objective of the research described in this

thesis has been to enable tracking of a stroke patient’s feet, hands and the control

objects that they touch for a home rehabilitation system. To enable this using color

& depth imagery, a thorough study has been made of how probabilistic methods

and level set based implicit shape representation can be used for real-time tracking,

3D model building and occlusion reasoning. Furthermore, the practical value of the

research has been taken into consideration, and all the algorithms developed have

achieved either real-time or close to real-time performance.

After the introductory remarks of Chapter 1, we began in Chapter 2 with a

broad overview of previous related methodologies for real-time tracking, 3D recon-

struction and multi-target tracking. First, edge-, point- and region-based methods

for model-based 3D tracking were reviewed. Edge-based methods are sensitive to

motion blur and cluttered backgrounds, while point-based methods are restricted

to textured objects. Region-based methods are more robust to motion blur and

occlusion, but fail when the pose-silhouette mapping is ambiguous. Second, we

looked at previous methods for 3D model building. Shape-from-X methods ei-
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ther recover only depth measurement or require multiple calibrated views to work.

Structure-from-motion based methods, on the other hand, cannot achieve real-time

performance for dense reconstruction, due to the slow dense stereo step. Finally, we

considered methods for multi-target tracking. Previous multi-target tracking meth-

ods are based on Bayesian filtering, which has limitations when searching in the

high dimensional state spaces typically encountered. Simplification by represent-

ing object as points or bounding boxes has been made to reduce the dimensionality,

but this makes the recovery of full DoF 3D poses of objects impossible.

Chapter 3∼5 are a trilogy which exploit the implicit shape representation for

efficient 3D tracking and reconstruction.

In Chapter 3, we introduced the model representation involving a 3D SDF. Based

on this, we developed a probabilistic graphical model for tracking a single known

object in 3D with only depth data. The pose tracking problem was cast as a cost

minimization problem by working though each pixel’s contribution to the joint

probability. Unlike previous model-based methods that rely on the noisy image

gradients to guide the search, the present method takes advantage of the smooth

gradients of the SDFs allowing the minimization to be carried out efficiently using

second-order optimization methods. Furthermore, the method inherits the advan-

tage of region-based methods that no explicit point correspondences are required,

making the method inherently robust to motion blur. It was shown that the proba-

bilistic framework can also be applied to more general 3D model registration prob-

lems. This was demonstrated in a number of applications, including intrinsic and

extrinsic camera calibration, and point cloud modelling.

In Chapter 4, the probabilistic graphical model was extended for the purpose of

simultaneous 3D tracking and model building with RGB-D imagery. Colour infor-

mation was utilized to model the foreground/background likelihood at each pixel.

The tracking problem was cast as the MAP estimate of the pose on the extended

graphical model, and the use of colour information made the tracking method ro-
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bust to close-to-surface outliers, missing data and occlusion. For reconstruction —

and based on the idea of space carving — an inside/outside volumetric model of

the object was learned online. Given a simple 3D model as prior, the 3D shape

was reconstructed by evolving a 3D level set function in the volumetric space. The

present reconstruction method comprises per-voxel operations only, and thus can

be implemented in parallel fashion on GPU for real-time performance.

In Chapter 5 we extended the probabilistic graphical model again, now to allow

for 3D tracking of multiple moving objects with identical appearance. By formu-

lating a ‘shape union’ — the union of all SDFs in camera coordinates — the data

association problem and the physical constraint are simultaneously solved through

the extended graphical model. We demonstrated that the method is computational-

ly efficient, with a linear increase in computational time w.r.t the number of objects.

Extensive experimentation has shown that all the algorithms proposed in Chap-

ter 3∼5 have achieved real-time performance with GPU implementation. Further-

more, computational efficiency of the tracking algorithms has been achieved in two

ways. First, the tracking algorithms back-project the few pixels in the object region

to object coordinates, instead of projecting the vast mount of vertices onto image

domain. Second, the pose optimization utilizes the precomputed gradients of the

SDFs, instead of computing image gradients at each frame. With these mechanism-

s, the tracker have achieved real-time performance with CPU implementation. The

multi-object tracker can track up to 5 objects in real-time on a single CPU thread.

In Chapter 6, we again explore implicit shape representations — but now for

online shape learning. The problem of real-time occlusion detection and recovery

for 2D tracking is considered. 2D shapes are represented by the harmonics in the

2D discrete cosine transform (DCT) of their contours. High and low frequency

harmonics are decoupled to represent the coarse information and the details of the

2D shape respectively. A regression model is learned online to model the rela-

tionship between the high frequency harmonics of and those of the low frequency
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using Locally Weighted Projection Regression (LWPR). We have demonstrated that

the learned regression model is able to detect occlusion and recover the complete

shape in real-time.

7.2 Future work

7.2.1 Scene understanding with dynamic objects

The contributions in this thesis lie generally in the fields of tracking and reconstruc-

tion. Throughout, along with a focus on the theoretical aspects of our research, we

have also demonstrated the application of our methods to stroke patient home re-

habilitation. Many other applications are possible, of course, most significantly, we

suggest, in the field of robotics.

Current approaches for scene reconstruction assume a broadly static environ-

ment, with the motion of objects being modelled as noise, which needs to be filtered

out. However, if the dynamic objects in the scene can be recognized and tracked

effectively, their shapes and motions may also be leveraged to improve the recon-

struction of the scene structure. To do this, objects need to be categorized into

two principal types — deformable (such as humans or animals) and rigid (such as

furniture or housewares). When using structure-from-motion algorithms to recon-

struct the scene, the motions and shapes of the rigid objects can be used directly to

improve not only the tracking of the camera, but also the mapping of the environ-

ment. Knowledge provided by deformable objects is much more difficult to use in

augmenting the low-level geometry information. However, deformable objects can

actually provide valuable information from a semantic point of view to potentially

improve the reconstruction of the static scene structure. For example, standing or

sitting human shapes can provide information about the supporting planes. In or-

der to take full advantage of the information in both the stationary and the moving
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parts of the environment, a higher level scene representation or one that mixes both

low-level features and high-level semantic object knowledge will be crucial. A chal-

lenging direction of research would be to develop a multilevel scene representation

to allow both rigid and deformable moving objects to be considered as semantic

“landmarks” towards a better understanding of a naturally dynamic scene. The

dynamic scene reconstruction problem also directly relates to the generic 3D object

tracking and reconstruction problem discussed in next subsection.

7.2.2 3D tracking and reconstruction of generic objects

The thesis has developed a probabilistic framework for simultaneous tracking and

reconstruction of an rigid 3D object with RGB-D data. The approach is able to

reconstruct small moving objects in a dynamic scene using a single RGB-D sensor.

However, there are still some limitations that, if addressed, would considerably

increase the capabilities of the method. These include the assumptions of rigidity,

known appearance models and position overlap between consecutive frames. Some

of these limitations would be greatly mitigated if, first, the object class could be

recognized effectively and, second, if prior shape and appearance knowledge could

be used in the reconstruction. A very promising direction of research would be

to capture the variance of shape and appearance inside low dimensional latent

spaces. Next, given the depth and imagery input, we could jointly optimize for

the pose and shape, but with the latter constrained within a learned latent space.

For example, Dame , Prisacariu, Ren and Reid [38] have started to explore this

idea by using a learned 3D shape space to improve dense SLAM reconstruction.

The pose of the object and the shape is jointly optimized with the constraint that

the 3D shape should only evolve within the learned shape space. However, if

the variance of deformable shapes can be captured either off-line or on-line in a

lower dimensional space, the information can be used to remove the assumption of

rigidity towards more generic tracking and reconstruction of possibly deformable
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Figure 7.1: Results from Dame, Prisacariu, Ren and Reid [38]: (a, c) reconstruction results
from a dense SLAM system. (b, d) improved result by estimating the car shape and pose
with the learned latent car shapes space.

objects.

7.3 Current status of project REWIRE

Finally, we revisit the current status of project REWIRE. A prototype of the REWIRE

platform is currently deployed in the Hospital Universitario Virgen del Rocio,

Seville, Spain and the University Hospital Zurich, Switzerland, and is under clini-

cal trail.

Because the trails are still underway, and because of patient confidentiality, we

are unable to report detailed results in this thesis. The project partners report that

the platform appears to be successful, that the patients are enjoying the various ex-

ercises, and that they are successfully performing their rehabilitation sessions both

at home and within the hospital environment. We expect to have more objective
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measurement of success by the end of the prototype deployment stage, i.e. early

2015.



A

gSLIC: A Real-time Implementation of
SLIC Superpixel Segmentation

Over-segmentation of images has a wide range of applications in computer vision.

Unfortunately, most state-of-the-art superpixel segmentation methods suffers from

a high computational cost, which make them unable to be used in real-time sys-

tems. Achanta et al. [5] introduced simple iterative clustering (SLIC) algorithm

to efficiently produce compact and nearly uniform superpixels. The simplicity, ef-

ficiency and the performance of the algorithm make it faster and more practical

for real-time systems than other existing superpixel segmentation methods, like

Normalized cuts [90] and QuickShift [140]. But still, the CPU-sequential imple-

mentation of SLIC works at 300∼400ms to segment a 640x480 image. Reducing the

number of iterations for each clustering can make the algorithm faster, but this will

suffer form loss of performance.

In this appendix, we detail an implementation of the SLIC algorithm using

NVIDIA CUDA framework. We present improvement 10× ∼20× from the original

CPU implementation of Achanta et al. [5]. We are not the first to attempt fast

image segmentation on GPU, notably Fulkerson and Soatto [45], which presents

exact GPU implementation of the quick shift superpixel segmentation algorithm.
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Figure A.1: NVIDIA CUDA thread model after after [95]
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Figure A.2: NVIDIA CUDA memory model after [95]

Regardless of the difference in algorithm themselves at the moment, our gSLIC

implementation is around 10× faster then Fulkerson and Soatto [45].

Our full source code with a simple example can be downloaded from http://

www.robots.ox.ac.uk/∼carl/code/gSLIC with Sample.zip, in the following sec-

tions, we will describe in detail our algorithm and implementation.

http://www.robots.ox.ac.uk/~carl/code/gSLIC_with_Sample.zip
http://www.robots.ox.ac.uk/~carl/code/gSLIC_with_Sample.zip
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A.1 GPU computing and NVIDIA CUDA

GPUs are traditionally been designed to be used for dense 3D graphic rendering,

new-generation GPUs has made GPGPU (General-Purpose Computation on GPUs)

available for sovling no-graphic computer vision problems. NVIDIA CUDA pro-

vides a set of SDK, software stack and compiler that allows for the implementation

of programs in C for execution on GPU. The thread model of CUDA is shown in

Fig. A.1. CUDA allows C functions (also called kernels) to be executed multiple

times by multiple threads, on multiple GPUs. Each thread carries a kernel, and for

complete utilization of GPU, thousands of threads will be used. Threads are grouped

in blocks, and blocks are grouped into grids (Fig. A.1). Threads in a block share mem-

ory and synchronize while blocks in a grid are independent. Each thread block

is executed on only one multiprocessor but a multiprocessor can execute several

blocks at the same time. The memory model of CUDA is shown in Fig. A.2. As it

is shown, a thread (executed on a processor within a multiprocessor) have a access

to 6 different types of memory: register, local, shared, global (device), constant and

texture memory. Each processor in multiprocessor has its own set of register and

local memory; each multiprocessor has its on-chip shared, constant and texture

cache and shared memory (constant texture cache are both read-only, shared mem-

ory is read-write). Global (device) memory access is much slower than on-chip and

built-in memory. Consequently the bottle neck in CUDA based software is often

global (device) memory access.

A.2 Simple Linear Iterative Clustering (SLIC)

The Simple Linear Iterative Clustering (SLIC) algorithm for superpixel segmenta-

tion is proposed in Achanta et al. [5]. An example of segmentation result is shown

in Fig. A.3.
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Figure A.3: example result of SLIC superpixel segmentation

The SLIC superpixel segmentation algorithm is a k-means-based local clustering

of pixels in the 5-D [l a b x y] space defined by the L, a, b values of the CIELAB

color space and the x, y pixel coordinates. The reason why CIELAB color space is

chosen is that it is perceptually uniform for small color distance. Instead of directly

using the Euclidean distance in this 5-D space, SLIC introduce a new distance

measure that considers superpixel size. The SLIC algorithm takes as input a desired

number of approximately equally-sized superpixel K, then for a image with N

pixels, the approximate size of each superpixel is N/K. For roughly equally sized

superpixels there would be a superpixel center at every grid interval S =
√

N/K.

Let [li, ai, bi, xi, yi]
T be the 5-D point of a pixel, cluster center Ck should be of the

same form [lk, ak, bk, xk, yk]
T. The distance measure Dk is defined as:

dlab =
√
(lk − li)2 + (ak − ai)2 + (nk − bi)2 ,

dxy =
√
(xk − xi)2 + (yk − yi)2 ,

Ds = dlab +
m
S

dxy, (A.1)

where Ds is the sum of the lab distance and the xy plane distance normalized by the

grid interval S. Variable m is introduced to control the compactness of superpixels.

The greater the value of m, the more spatial proximity is emphasized and the more

compact the cluster.
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Table A.1: Modified SLIC superpixel segmentation algorithm.

Initialize cluster centers [lk, ak, bk, xk, yk]
T by sampling pixels at regular grid steps S.

Perturb cluster centers in to the lowest gradient position.
for each pixel

Assign the pixel to the nearest cluster center based on initial grid interval S;
repeat

for each pixel
Locally search the nearby 9 cluster centers for the nearest one
Label this pixel with the nearest cluster’s index.

Update each cluster center based on pixel assignment
Compute residual error E(L1 distance) between last and current iteration.

until E ≤ threadshould
Enforce connectivity of superpixels

With the distance matric defined, the SLIC superpixel segmentation algorithm

is simply local k-means algorithm, which is summarized in the Algorithm 1 in

Achanta et al. [5]. In order to make the most of the parallel computing on GPU, we

modified the algorithm to enable one-thread-per-pixel computing, as summarized

in Table A.1

A.3 gSLIC implementation

As is shown in Fig. A.4, Our algorithm can be split into CPU and GPU two parts.

The image is acquired by the host function running CPU, then transferred to GPU

device memory. After color space transformation and segmentation has been done

by GPU, segmentation mask is transferred back to host function again, where we

run a recursion-based post processing function to enforce the connectivity of all

superpixels.

The color space transformation part is naturally pixel-wise parallelizable, so

we use 1 thread per pixel on 16 × 16 blocks. Then we use 1 thread per cluster

to initialize cluster centers. The initial size of each cluster is determined by S
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Transform to CIELAB colour spaceInput image

Initialize cluster centres

For each pixel

Compute distance metric

Assign pixel to the nearest centre

For each of 9 cluster centres in 
LOCAL neighbourhood 

Iterate till converge

Update cluster centres

Enforce cluster connectivity

CPU GPU

Figure A.4: Work flow of gSLIC

Block(22,1)

Block(22,2)

Figure A.5: Block arrangement example for gSLIC (Right)
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defined in Section A.2. In order to keep compatibility with CUDA 1.0, in which

the maximum number of thread per block is 512, we still use 16× 16 fixed sized

block in the local k-means iteration step. For most cases, the size of each cluster

is larger than 256, thus clusters are consisted of multiple blocks, Fig. A.5 is an

example of our block assignment. By using this block assignment, it is guaranteed

that all threads within the same block need only to search the same set of cluster

centers in neighborhood for the nearest one. Thus we pre-load the cluster centers’

information into local shared memory for efficiency.In each iteration, after all pixels

has been assigned a label (which is the index of the nearest center), we use one

cluster per thread to update cluster center. The reason why we use on thread

per cluster instead of on thread per pixel is to avoid atomic operation, which will

slow down the whole algorithm greatly. Besides, This part could be accelerated by

using parallel reduction algorithm, but in current version, since we have already

obtained real-time performance, we did not implemented the parallel reduction.

When the K-means iteration has converged, we transfer the labeled image back to

host as segmentation mask. The post processing to enforce connectivity is the same

algorithm as in Achanta et al. [5]. Since it is recursion based method, is not suitable

for GPU computing, thus we put it on CPU host function.

A.4 Library Usage

Because the source code for gSLIC is available online, we have decided to include

a brief description of the usage of the library, as below.

FastImgSeg is the main class. It implements the full gSLIC superpixel segmen-

tation algorithm. It need to be initialized by class constructor or by initializeFast-

Seg. Initialization take the size of image and number of segments as parameter.

After initialization, call LoadImg to load user image. Note that current lib only

take 4-channel image as input, the forth channel is reserved for depth informa-
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Implementation 320×240 640×480 1280×960
gSLIC 9ms 21ms 86ms

SLIC [5] 88ms 354ms 1522ms

Table A.2: Example of full processing times for different image sizes

Implementation Kmeans Iteration (GPU) Enforce Connectivity (CPU)
320×240 6.5ms 2.5ms
640×480 13ms 8ms
1280×960 53ms 33ms

Table A.3: GPU and CPU time consumption for different image sizes

tion in later version. When user image has been loaded, call DoSegmentation to

segment the image. Currently 3 methods are available: SLIC (SLIC in CIELAB

space), XYZ SLIC (SLIC in XYZ space), RGB SLIC (SLIC in RGB space). The sec-

ond parameter of DoSegmentation is the weight m for spatial distance, as defined

in Section A.2. When segmentation is finished, resulting segmentation mask will

be stored in the public buffer segMask. User can also call Tool GetMarkedImg

to draw segmentation boundary on markedImage or call Tool WriteMask2File to

write segmentation mask to a file.

A.5 Results

Our implementation is designed to produce the same result as the sequential SLIC

implementation of Achanta et al. [5], thus we use their windows executable as

our baseline method in our speed test experiment. We used an Intel Core i7-

2600 (3.60GHz) machine with a Nvidia GTX460 GPU to run all our speed test.

In Table A.2 we show the comparison between the processing time consumed by

SLIC [5] and gSLIC for an single image at three sizes. The times of speeding up by

using our GPU implementation increases with the size of image, achieving 10∼20

times faster than the original sequential implementation. In Table A.3 we show

the processing time consumed by both the GPU Kmeans iteration part and CPU
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enforce connectivity. The time consumption by the recursive enforce connectivity

increases much faster than the GPU iteration part, so in the future work, we will

introduce a parallel version of enforcing connectivity algorithm.
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Video Material

Video B.1: A Generalizable Probabilistic Framework for Model Fitting in Depth
http://youtu.be/Xh6Lyc AaO8

http://youtu.be/Xh6Lyc_AaO8
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Video B.2: STAR3D: Simultaneous Tracking And Reconstruction of 3D Objects
http://youtu.be/8ppQ4FtRNVc

Video B.3: 3D Tracking of Multiple Objects with Identical Appearance
http://youtu.be/BSkUee3UdJY

Video B.4: Shape Regression for Online Segmentation and Tracking
http://youtu.be/irqYhrgEilM

http://youtu.be/8ppQ4FtRNVc
http://youtu.be/BSkUee3UdJY
http://youtu.be/irqYhrgEilM
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