
3D Tracking of Multiple Objects with Identical Appearance using RGB-D Input

Carl Yuheng Ren†, Victor Prisacariu†, Olaf Kaehler†, Ian Reid‡ and David Murray†

†Department of Engineering Science, University of Oxford
‡School of Computer Science, University of Adelaide

†{carl,victor,olaf,dwm}@robots.ox.ac.uk
‡ian.reid@adelaide.edu.au

Abstract

Most current approaches for 3D object tracking rely on
distinctive object appearances. While several such trackers
can be instantiated to track multiple objects independent-
ly, this not only neglects that objects should not occupy the
same space in 3D, but also fails when objects have highly
similar or identical appearances. In this paper we develop
a probabilistic graphical model that accounts for similarity
and proximity and leads to robust real-time tracking of mul-
tiple objects from RGB-D data, without recourse to bolt-on
collision detection.

1. Introduction
Tracking 3D object pose over time is a core task in com-

puter vision, and one which has been the matter of sustained
research over three decades. For much of that time, 3D
model-based vision was concerned with tracking rigid en-
tities having a simple and predefined geometrical descrip-
tion and using sparse features computed from 2D imagery.
However, work over the last few years has seen fundamental
changes in every aspect: from the use of learned, geometri-
cally complex, and sometimes non-rigid objects, to the use
of dense and rich representations computed from combined
conventional image and depth cameras.

A key limitation of current RGBD-based 3D trackers
(e.g. [14]) is their focus on single objects, with the exten-
sion to multiple objects often being cast as a straightfor-
ward replication of independent object trackers. We believe
“straightforward” to be a gross simplification: it ignores t-
wo pitfalls commonly encountered in real-world scenarios.
First is similarity in appearance, where objects have similar
colour and shape (cars are usually followed by more cars,
not by elephants) and second is the physical constraint that
exists between multiple rigid bodies, chiefly that they must
not intersect one another. In this work we address these t-
wo problems and propose an RGBD-based tracker that can
recover the 3D pose of multiple objects with identical ap-

pearance, while preventing them from intersecting.
The paper is structured as follows. Section 2 gives an

overview of related work. Section 3 describes our proba-
bilistic formulation of the multiple object tracking problem,
and Section 4 provides experimental insight into its opera-
tion. Conclusions are drawn in Section 5.

2. Related Work
We begin this section by covering the general theme of

model-based 3D tracking. Next, we consider more special-
ized works that use distance transforms. Finally, we detail
methods that aim to impose physical constraints.

Model based 3D tracking. Most existing research on
3D tracking with or without depth data uses a model-based
approach that is probabilistically estimating a state by min-
imizing some objective function measuring the discrepan-
cy between the expected and observed image cues. While
early works out of necessity exploited highly sparse data
such as points and edges (e.g. [5, 4, 8]), a common algorith-
m deployed on denser data is Iterative Closest Point (ICP)
[1]. In [6], the authors input RGB-D imagery from Kinec-
t and use ICP to track hand-held 3D rigid puppets. The
system yields robust and real-time performance, but occlu-
sion introduced by the hand has to be carefully managed
through a colour-based pre-segmentation phase. Awkward-
ly, a different appearance model is required to achieve pre-
segmentation when tracking multiple objects. A more gen-
eral work is KinectFusion [9], where the entire scene struc-
ture along with camera pose are estimated simultaneously.
Ray-casting is used to establish point correspondences, after
which estimation of alignment or pose is achieved with ICP.
However, a key requirement when tracking with KinectFu-
sion is a static scene, or in our context a single object, a con-
dition which is obviously violated when tracking multiple
independently moving objects. Another cluster of RGB-D
based tracking works uses sampling, and relies on evalua-
tions of the objective function at many positions in the state
space. For example, in [11] the authors use Particle Swar-
m Optimization to track an articulated hand, whereas [18]

1

instead uses a particle filter to estimate pose. Relying on a
large number of objective evaluations is computational tax-
ing, even given parallel GPU implementations as in [11].

Signed distance functions for tracking. An alternative
to ICP is the use of the signed distance function (SDF). It
was first shown in [3] that distance transforms could be used
efficiently to register 2D/3D point sets. The SDF was used
in [15] to formulate different embedding functions for ro-
bust real-time 3D tracking of rigid objects using only depth
data, an approach extended in [14] to leverage RGB data in
addition. A similar idea is described in [17], where the au-
thors directly use the gradient of the SDF for tracking cam-
era pose. Using only image data, the authors in [13] project
a 3D model into the image domain to generate a SDF-like
embedding function, and the 3D pose of a rigid object is
recovered by evolving this embedding function. KinectFu-
sion [9] also uses a truncated SDF for shape representation,
but, as noted earlier, it uses ICP for camera tracking, instead
of directly exploiting the SDF. As shown in [17], ICP is less
effective for this task.

Tracking multiple objects with physical collision con-
straints. Physical constraints between 3D objects are usu-
ally enforced by reducing the number of degrees of free-
dom (dof) in the state. An elegant example of tracking
of connected objects (or sub-parts) in this way is given
in [2]. However, when tracking multiple independently
moving objects, physical plausibility is violated suddenly
and intermittently by the collision of objects: these con-
straints cannot be conveniently enforced by reparameteriza-
tion. Indeed, rather few works model the physical collision
between objects. In [10], the authors track two interact-
ing hands with Kinect input. A penalty term measuring the
inter-penetration of fingers is introduced to invalidate im-
possible articulated poses. In [12, 7], a hand and a mov-
ing object are simultaneously tracked, and invalid configu-
rations similarly penalized. In both cases, the used measure
is the minimum magnitude of 3D translation required to e-
liminate intersection of the two objects, which is computed
using the Open Dynamic Engine library [16]. In contrast,
in our proposed method, the collision constraint is more
naturally enforced through a probabilistic generative model,
without the need of an additional constraint engine.

3. Methodology

The theoretical underpinning of our multi-object tracker
is a probabilistic model. After establishing notation in §3.1,
we describe this model in §3.2, and detail inference on it in
§3.3 and §3.4. The optimization method and an addition-
al online learning of appearance models are summarized in
§3.5 and §3.6.

3.1. Notation

For clarity, we introduce the notation using single object
tracking, as illustrated in Fig. 1. Let Ωd and Ωc be the depth
and colour image domains, respectively, and assume known
calibration so that the aligned and combined RGB-D image
domain, Ω is readily derived. A pixel ximg ∈ Ω at image
coordinates (u, v) has depth value d and colour value y. We
use a dot to denote the homogeneous coordinates of ximg:
ẋimg = (ud, vd, d)> ∈ R3. A pixel ximg in the object region
is projected from a 3D point Ẋobj = (X,Y, Z, 1)> on the
object surface in object coordinates as:

ẋimg = AXcam , Xcam = Tc,oẊobj (1)

where A is the depth camera’s intrinsic matrix, and Tc,o =
[R|t]3×4 ∈ SE3 is the Euclidean transformation taking a 3D
point Ẋobj from object coordinates to camera coordinates.
By To,c ∈ SE3 we denote the inverse transformation. For
computational efficiency, our implementation parametrizes
the transformation To,c by a 6-dimensional pose vector p,
with rotation encoded by modified Rodrigues parameters.

We represent object models by a 3D SDF, Φ, defined in
a local space around each object. The surface of the 3D
shape is recovered as the zero level, Φ = 0, and the regions
outside and inside the object map to positive and negative
values of Φ, respectively. We use the “bag-of-voxels” repre-
sentation given in [14]: the i-th voxel {X,V }i comprises its
3D location Xi and an indicator Vi that can take on values
on or out for on the surface, or outside the shape, respec-
tively. Note that Vi never indicates in: a voxel inside the
object cannot generate a pixel in Ω.

We focus here on the challenging task of tracking multi-
ple similar or identical objects, and without loss of generali-
ty assume that all tracked objects share the same appearance
model. Only two such appearance models are then need-
ed to describe the colour statistics of the scene — one for
the object surface, which generates the foreground region in
the image; and one for the background. Both are represent-
ed by their likelihoods, P (y|V), where V , as noted above,
has values on or out only. The two appearance models are
represented with RGB colour histograms. The histograms
are initialized either from an object detector or from a user-
selected bounding box on the RGB-D image, in which the
foreground model is built from the interior of the bounding
box and the background from the immediate region outside
the bounding box. Once initialized, the histograms are up-
dated continuously while tracking.

3.2. Generative Model

The graphical model motivating our multi-object track-
ing algorithm is shown in Fig. 1 (left). Generating a RGB-
D image Ω should be conditionally dependant on the set of
3D object shapes {Φ1...ΦM} and their corresponding set

Color image + Depth image

𝑃(𝑐|𝑉 = 𝑜𝑛)
𝑃(𝑐|𝑉 = 𝑜𝑢𝑡) Ω

Camera

coordinates

Object coordinates

Φ

A

T
c,o

(𝒑)

RGB-D image

domain

Φ

𝑝

M

𝚽cam 𝐗cam

V

𝛀

N

Figure 1. Left: representation of the 3D model Φ, the RGB-D image domain Ω, the surface/background models P (y|V = on), P (y|V =
out) and the pose Tc,o(p). Right: graphical model of our multi-object tracker.

of poses p = {p1...pM} at the time the image was taken.
To make the generative process more intuitive, we intro-
duce an intermediate variable Φcam, which is the union of
all 3D object shapes in camera coordinates. The genera-
tive process follows: the set of 3D shapes {Φ1...ΦM} and
their corresponding set of poses p first generate a ‘shape u-
nion’ Φcam in camera coordinates, then Φcam generates a
set of voxels {Xcam, V }, again in camera coordinates. Fi-
nally, the observed RGB-D image domain Ω is generated
from {Xcam, V }. Note that when the number of objects
M = 1 the generative model deflates gracefully to the s-
ingle object case given in [14]. In the model, the locations
of voxels Xcam are treated as generated randomly from the
shape Φcam, and all voxel locations in camera coordinates
have the same probability of being generated.

The objective of multi-object tracking is to find the op-
timal sequence of sets of poses {p0...pt} given the set
of object shapes Φ1...ΦM and observed RGB-D images
{Ω1...Ωt}:

max
p0...pt

P (p0 . . .pt|Φ1...ΦM ,Ω0 . . .Ωt) (2)

We do not assume a motion model, hence all poses p0...pt
in the sequence are independent and we can consider each
time step independently dropping the index t. Using the
Bayes rule, it follows that:

P (p|Φ1...ΦM ,Ω) ∼ P (Ω|Φ1...ΦM ,p)P (p|Φ1...ΦM) (3)

In the following subsections, we will refer to the first term
P (Ω|Φ1...ΦM ,p) as the data term or image likelihood and
the second term P (p|Φ1...ΦM) as the physical constraint
term.

3.3. Data term

According to our graphical model, the data term (or im-
age likelihood) follows as:

P (Ω|Φ1...ΦM ,p) = P (Ω|Φcam)P (Φcam|Φ1...ΦM ,p),
(4)

where we introduced the ‘shape union’ Φcam. As-
suming that the observations are pixel-wise independent,

P (Ω|Φcam) can be decomposed into a product of per-pixel
likelihoods:

P (Ω|Φcam) =
∏
i

P (ximg
i , yi|Φcam) (5)

By marginalization over V the per-pixel likelihood be-
comes:

P (ximg, y|Φcam)

∝
∑

k={on,out}

{
P (ximg|Φcam, V=k)P (V=k|y)

}
(6)

The pixel location likelihoods for the foreground and back-
ground are distributed as:

P (ximg|Φcam, V=on) =
δε(Φ

cam(Xcam))

ηf
(7)

P (ximg|Φcam, V=out) =
Hε(Φ

cam(Xcam))

ηb
(8)

ηf =
∑
ximg
i ∈Ω

δε(Φ
cam(Xcam

i)) (9)

ηb =
∑
ximg
i ∈Ω

Hε(Φ
cam(Xcam

i)) (10)

where Hε is the smoothed Heaviside step function and δε is
the smoothed unit impulse function defined as:

Hε(z) =
1

1 + e−z/2
δε(z) =

2e−z/2

(1 + e−z/2)2
(11)

Substituting the per-pixel likelihoods for ximg into Eqn. 6,
we obtain the image likelihood as:

P (Ω|Φcam) (12)

∝
∏

ximg
i ∈Ω

{Pfδε (Φcam(Xcam
i)) + PbHε (Φcam(Xcam

i))}

where Pf = P (y|V = on) and Pb = P (y|V = out). Note
that this likelihood function is very similar to the one used
in [14], but our likelihood is no longer directly a function of
the set of object poses p. Instead, the ‘shape union’ Φcam

camera

coordinate

RGB-D

image plane 𝛀

𝚽cam = 𝐦𝐢𝐧()
Φ1
cam

Φ2
cam

SDF fusion

object-1’s

local coordinate
Φ1

Φ2

T1
c,o

T2
c,o

object-2’s

local coordinate

Figure 2. Illustration of the fusion of multiple object SDFs and the projection process. SDFs are first transformed into camera coordinates
then fused together by a minimum function. The observed RGB-D image domain is generated by the fused SDF.

now is a function of the object shapes {Φ1...ΦM} and poses
p. As mentioned earlier, if the number of objects M = 1
then Eqn. 12 reverts to the image likelihood in [14].

Because multiple SDFs can be fused together by taking
the minimum value of all SDFs, we formulate Φcam as fol-
lows. Given a set of object shapes {Φ1...ΦM} and their cor-
responding set of poses p, we transform each object shape
Φj into camera coordinates as Φcam

j using pj . Then the ob-
ject shapes in camera coordinates {Φcam

1 ...Φcam
M } are fused

into a single SDF Φcam with a minimum function (see E-
qn. 15 later). The geometry and notation are illustrated in
Fig. 2.

The pose pj of the j-th object parameterizes a transfor-
mation To,c

j from object to camera coordinates. The j-th
contribution to the shape union Φcam

j then follows as:

Φcam
j (Xcam) = Φj(T

o,cẊcam) = Φj(X
obj) (13)

In the camera coordinate system, the contributions
{Φcam

1 ...Φcam
M } are fused together using a ‘soft’ minimum

function, so that we arrive at an analytical approximation of
the shape union:

Φcam = min (Φcam
1 ,Φcam

2 , ...,Φcam
M) (14)

≈ − 1

α
log

M∑
j=1

e−αΦcam
j

where α controls the smoothness of the approximation.
Theoretically, larger α gives better approximation of the
minimum function, but empirically, smaller α gives wider
based of convergence for our tracker. Substituting Eqn. 13
into Eqn. 15:

Φcam(Xcam) = − 1

α
log

M∑
j=1

e−αΦj(To,c
j Ẋ

cam) (15)

= − 1

α
log

M∑
j=1

e−αΦj(Xobj
j)

where Xobj
j is the back-projection of Xcam in the j-th ob-

ject coordinate system. The probability of the shape union

P (Φcam|Φ1...ΦM ,p) in Eqn. 4 is just a Dirac distribution
around this formulation, thus the image likelihood in Eqn. 4
becomes:

P (Ω|Φ1...ΦM ,p) ∝ (16)∏
ximg
i ∈Ω

{
Pfδε

(
− 1

α
log

M∑
m=1

exp{−αΦm(Xobjj′)}

)

+ PbHε

(
− 1

α
log

M∑
m=1

exp{−αΦm(Xobjj′)}

)}
The log-likelihood gives us the data-fitting term of the over-
all energy function: Edata = − logP (Ω|Φ1...ΦM ,p). We
differentiate this energy term w.r.t. the set of pose parame-
ters p = {p1, ..., pM} in which each pj , recall, is a 6-vector:

∂Edata

∂p
= −

∑
ximg
i ∈Ω

Li
∂Φcam(Xcam

i)

∂p
; (17)

Li =
Pfδ

′

ε + PbH
′

ε

Pfδε(Φcam) + PbHε(Φcam)
(18)

∂Φcam(Xcam
i)

∂p
= − 1

α

M∑
j=1

wj∇Φj
∂Xobj

i,j

∂p
; (19)

wj =
e−αΦj(Xobj

i,j)∑M
k=1 e

−αΦk(Xobj
i,k)

(20)

where δ
′

ε and H
′

ε are derivatives of δε and Hε respective-
ly. Xobj

i,j is the back-projection of Xcam
i in the j-th objec-

t’s coordinate frame with To,c
j . The gradients of the SDFs

∇Φj =
[
∂Φj

∂x
∂Φj

∂y
∂Φj

∂z

]
are computed using central finite

differences, and, since the shape of the object is already
known, these gradients for each object can be computed in
advance.

Note that the derivative of this energy term has a very
clear meaning: given a pixel ximg

i in the RGB-D image do-
main, instead of assigning this pixel deterministically to a
certain object, we back-projected ximg

i (i.e. Xcam
i in camera

coordinates, since ẋimg = AXcam) into all objects’ coordi-
nates with the current set of poses p. Then, a membership

weight wj is automatically computed as in Eqn. 20. For ex-
ample, consider a point in camera coordinates Xcam

i . If the
back-projection Xobj

i,m is close to the m-th object’s surface
(Φ(Xobj

i,m)→ 0) and other back-projections Xobj
i,j are further

away from the surfaces (Φ(Xobj
i,j) > 0), then we will find

wm → 1 and the other wj → 0, with
∑M
j=1 wj = 1. Thus

wj can be interpreted as the probability that a pixel Xcam
i

belongs to the j-th object.

3.4. Physical constraint term

Now we come to the second likelihood term in Eqn. 3.
We decompose the joint probability of all object poses given
all 3D object shapes into a product of per-pose probabilities:

P (p|Φ1...ΦM) (21)

= P (p1|Φ1...ΦM)

M∏
j=2

P (pj |{p1...pj−1},Φ1...ΦM)

This formulation can be used to enforce any physical priors
on any poses, but in our case we only use it to avoid phys-
ical collisions between objects. Since we do not have any
pose priors on any objects, we can drop the probability term
P (p1|Φ1...ΦM).

The probability P (pj |{p1...pj−1},Φ1...ΦM) is defined
based on the fact that a surface point on one object should
not move inside any other objects. For each object Φj ,
we uniformly and sparsely sample a set of collision points
Cj = {Cj,1, ..., Cj,K} from its surface in object coordi-
nates. We then project these collision points with its cur-
rent pose Tc,o

j (pj) into the camera coordinates as Ccam
j =

{Ccam
j,1 ...C

cam
j,K } = Tc,o

j Cj . We use Φcam
−j to demote the

union of SDFs {Φcam
1 ...Φcam

j−1} in the camera coordinates.
And P (pj |{p1...pj−1},Φ1...ΦM) is defined as the average
collision point agreement with Φcam

−j

P (pj |{p1...pj−1},Φ1...ΦM) =
1

K

K∑
k=1

Hε(Φ
cam
−j (Ccam

j,k)− ξ)

(22)

whereHε is the smoothed Heaviside function from Eqn. 11.
Since the partial shape union Φcam

−j also has negative val-
ues inside and positive values outside the surface, the per-
collision point agreement Hε(Φ

cam
−j (Ccam

j,k)− ξ) equals to 1
when Ccam

j,k is outside Φcam
−j and take on a decreasing value

between 1 and 0 as Ccam
j,k moves deeper inside Φcam

−j (i.e. vi-
olating the collision constraint). ξ is a small positive offset
to allow very close object surfaces. The log-likelihood of
P (p|Φ1...ΦM) gives us the second energy term, the physi-
cal constraint term:

Ephy = −
M∑
j=1

log

(
1

K

K∑
k=1

Hε(Φ
cam
j− (Ccam

j,k)− ξ)

)
(23)

3.5. Optimization

The overall energy function is the sum of the data term
and the physical constraint term E = Edata + Ephy. We use
the local frame to evaluate the derivative at identity at each
iteration, and use Levenberg-Marquardt (LM) to compute
the incremental change in all poses jointly. The pose update
are as follows:

p̃ = −(J>E JE + λdiag(J>E JE))
∂E

∂p
(24)

for each To,c
j (pj), To,c

j ← T(p̃j)

[
To,c
j

0> 1

]
(25)

where λ is the non-negative LM damping factor that is ad-
justed at each iteration.

3.6. Online learning of appearance model

The surface and background appearance models P (y|V)
are very important for the robustness of the tracking, so
we adapt the appearance model online in each frame af-
ter the tracking is completed. We use the pixels that have
|Φcam(Xcam)| 6 3 (points that best fit the surfaces of mul-
tiple objects) to compute the surface appearance model and
the pixels in the immediate surrounding region of the ob-
jects to compute the background model. The online update
of the appearance models is achieved by using a linear opin-
ion pool with learning rates {αon,out} :

Pt(y|Vi) = (1− αi)Pt−1(y|Vi) + αiPt(y|Vi) (26)

In all our experiments, we set αon = 0.05 and αout = 0.3.

4. Implementation and Experiments
We have performed a variety of experimental evaluation-

s, both qualitative and quantitative. Qualitative examples of
our algorithm tracking different types of objects in real-time
and under significant occlusion and missing data are provid-
ed in supplementary material.

Implementation. We implemented both CPU and GPU
versions of our multi-object tracker. With two objects, both
implementations achieve real-time performance. The CPU
version runs at some 30Hz on an Intel Core i7 3.4GHz pro-
cessor, and the accelerated version at 35Hz using the same
CPU and Nvidia GTX 680 GPU. The speed of the two im-
plementations is similar in our experiments because (i) we
only use pixels that are close to the projection of the ob-
ject in the depth image and (ii) most of the tracked objects
occupy a small region of the RGB-D image. This means
we only leverage a few thousands points, which does not
take full advantage of the computational power of the GPU.
When a larger number of points is used (i.e when track-
ing objects that occupy larger image regions or when using
denser depth), the GPU implementation will outperform the
CPU implementation by a larger margin.

0 100 200
0

5

10

15

20
Error in obj1 translation

frame no.

pi
xe

l u
ni

t

0 100 200
0

5

10

15

20
Error in obj1 rotation

frame no.

de
gr

ee

0 100 200
0

5

10

15

20
Error in obj2 translation

frame no.
pi

xe
l u

ni
t

0 100 200
0

5

10

15

20
Error in obj2 rotation

frame no.

de
gr

ee

Our result Single object tracker Object distance (scaled for visualization)

94

142
78111

Figure 3. Pose estimation error comparison between our multi-object tracker and two instances of the single-object tracker [14]. Sample
synthetic RGB-D frames used in our experiment are shown on the right with the frame number corresponding to the marks on the charts.

0 50 100 150 200
60

70

80

90

100

110
Relative distance

frame no.

m
m

0 50 100 150 200
80

90

100

110

120

130
Relative rotation

frame no.

de
gr

ee

Our result
Single object
tracker

Figure 4. Comparison of the variance in relative pose estimation between our multi-object tracker and two instances of the single-object
tracker in [14]. Sample RGB-D frames used in our experiment are shown on the right.

Quantitative Experiments. We begin with two sets of
quantitative experiments to evaluate the proposed method.
For the first (Fig. 3) we follow a standard benchmarking
strategy from the markerless tracking literature and eval-
uate our tracking results on synthetic data, since ground
truth information for real data is very difficult to obtain.
We move two objects of known shape in front of a virtu-
al camera and generate RGB-D frames. The objects pe-
riodically move further apart and closer from each other.
We add Gaussian noise to both the rendered colour and the
depth images. Four sample frames from the test sequence
are shown in Fig. 3. Using this sequence we compare the
tracking accuracy of our multi-object tracker with two in-
stances of the single object tracker presented in [14]. To
evaluate translation accuracy we use the Euclidean distance
between the estimated and ground truth poses. To mea-
sure rotation accuracy, we rotate the unit vectors to the three
axis directions ex,ey ,ez using the ground truth Rg and we
estimate the rotation matrix Re. The error value is aver-
aged over the three including angles of the resulting vectors:
rerr = 1

3

∑
i∈x,y,z cos−1

(
(Reei)

>Rgei)
)
. In the graphical

results of Fig. 3 the green line shows the relative distance
between the two objects. Note that this value has been s-
caled and offset for visualization. It can be seen that when
the two objects with similar appearance model are neither
overlapping nor close (e.g. frame 94), both two single ob-
ject trackers and our multi-object tracker provide accurate
results. However, once the two objects move close togeth-
er, the two separate single object trackers [14] produce very
large errors. The single object tracker fails to model the

pixel membership, leading to an incorrect pixel association
when the two objects are close together. Our soft pixel
membership solves this problem.

The second quantitative experiment (Fig. 4) makes a sim-
ilar comparison, but with real imagery. As before, it is diffi-
cult to obtain the absolute ground truth pose of the objects,
and instead we measure the consistency of the relative pose
between two static objects by moving the camera around
while looking towards the two objects. Example frames are
shown in Fig. 4. If the two recovered poses are accurate
we would expect consistent relative translation and rotation
through the whole sequence. As shown in Fig. 4, our multi-
object tracker is able to recover much more consistent rela-
tive translation and rotation than two independent instances
of [14].

Qualitative Experiments. We use four challenging re-
al sequences to demonstrate the robust performance of our
multi-object tracker. The results are shown in Figs. 5,6
and 7. In Fig. 5, we show our multi-object algorithm track-
ing two objects: two pieces of cut foam (top) and a mug
and a ball (bottom). The leftmost column shows snapshots
of typical RGB and D images and the per-pixel foreground
probability Pf . The right columns show the per-pixel mem-
bership weight wj (top rows in each set), magenta and cyan
corresponding to the two objects and blue pixels showing
ambiguous membership. The tracking result is shown in
the bottom rows. In the second sequence, the cup provides
both occlusion and physical constraints to the ball. For this
experiment, note that even though there is no depth obser-
vation from the ball (owing to significant occlusion from the

Figure 5. Film strips showing our multi-object algorithm tracking two objects: two pieces of cut foam (top) and a mug and a ball (bottom).
The leftmost column shows snapshots of typical RGB and D images and the per-pixel foreground probability Pf . The right columns show
the per-pixel membership weight wj (top rows in each set) and the tracking result (bottom row in each set).

Figure 6. Film strips showing a challenging sequence where 5 pieces of toy bricks with identical colour are tracked. The top sequence
shows the tracking result rendered on the colour image and the sequence below shows the original colour images.

cup), our algorithm can still accurately estimate the location
of the ball using solely the physical constraint. In Fig. 6, we
show a more challenging sequence where five pieces of toy
bricks are tracked. The top sequence shows the tracking
result and the bottom sequence shows the original colour
input. The set of toy bricks has difference shapes but identi-
cal appearance. In spite of the heavy self-occlusion and the
occlusion introduced by hands, our method can still track
robustly and accurately.

When tracking in real-world scenarios, it is often diffi-
cult to obtain accurate 3D object models. Fig. 7 shows our
tracker using inaccurate 3D shapes and still producing rea-
sonable results. We track two interacting feet with a pair of
very coarse shoe models. Throughout most of the sequence
our tracker successfully recovers the two poses. However,
we do also encounter two failure cases here. The first one is
visible in column 4 of Fig. 7, where the shoe is incorrectly
rotated. This happens because the 3D model is rotationally
ambiguous around its long axis. The second failure case can
be seen in column 6. Here, the ground pixels (i.e. the black

shadow) have very high foreground probability, as can be
clearly seen in row 3. With most of one foot occluded, the
tracker incorrectly tries to fit the model to the pixels with
high foreground probability, which leads to failure. As a
testament to its robustness, our tracker does automatically
recover from both failure cases.

5. Conclusions

We have presented a novel framework for tracking multi-
ple 3D objects from a sequence of RGBD images. We show
that our formulation has several advantages over instanti-
ating multiple individual trackers, both from a theoretical
point of view and from a practical one. First, our method
is particularly well suited for tracking several objects with
similar or identical appearance, which is a common case in
many applications, such as tracking cars or pairs of hands
or feet. Our method is grounded in a rigorous probabilistic
framework, so we naturally obtain weights that tell us the
probability of individual image observations being generat-

Figure 7. Film strips showing our algorithm tracking two interacting feet with two inaccurate models. The leftmost column shows snapshots
of typical RGB and D images and the per-pixel foreground probability Pf . The right columns show the membership weight wj (top row)
and the tracking result (bottom row). The tracker failed on the frames outlined with red frames, but automatically recovers from failure.

ed by each of the tracked objects, thus implicitly solving
the data association problem. Furthermore, our formulation
naturally leads to what we call a physical constraint term,
which allows us to specify prior knowledge about the world.
We have used this term to indicate that it is unlikely that
several objects occupy the same locations in 3D space. In
addition to collision avoidance, our formulation allows for
generic interaction forces between objects to be modelled.

We validate our claims with several experiments, show-
ing that a combined tracking of multiple objects exhibits su-
perior performance over instatiating the same tracker mul-
tiple times independently. For this evaluation we used an
efficient implementation, that easily tracks multiple objects
at 30 Hz without the use of any GPU acceleration. Our sys-
tem is therefore well suited for real time applications, which
is often an important criterion for tracking tasks.

Our tracker is region-based and currently uses simple
histograms as appearance models, making in particularly
well suited for untextured objects. Sometimes however oth-
er types of appearance models might be better suited, so
a possible direction of research is to use different appear-
ance models, such as texture-based models. In line with
other model based 3D trackers our approach currently also
requires 3D models of the tracked objects to be known and
given to the algorithm. While we do explicitly show good
performance even with crude and inaccurate models, this
might be considered another shortcoming to be resolved in
future work. In particular dynamic objects, such as hands,
could be an interesting direction, since tracking individu-
al fingers might greatly benefit from a tracker that can deal
with near-identical appearance and nicely integrated physi-
cal constraints.

Acknowledgments. This work is funded by the
‘REWIRE’ project (Grant No. 287713) under the EU 7th
Framework Programme, EPSRC grants EP/H050795 and
EP/J014990, and the Australian Research Council (Laure-
ate Fellowship FL130100102 to IDR).

References
[1] P. J. Besl and N. D. McKay. A method for registration of 3-D

shapes. IEEE Trans PAMI, 14(2):239–256, 1992.

[2] T. Drummond and R. Cipolla. Real-time visual tracking
of complex structures. IEEE Trans PAMI, 24(7):932–946,
2002.

[3] A. W. Fitzgibbon. Robust registration of 2D and 3D point
sets. In Proc. 12th BMVC, 2001.

[4] D. B. Gennery. Visual tracking of known three-dimensional
objects. IJCV, 7(3):243–270, 1992.

[5] C. Harris and C. Stennett. RAPiD – a video rate object track-
er. In Proc. 1st BMVC, 1990.

[6] R. Held, A. Gupta, B. Curless, and M. Agrawala. 3D pup-
petry: a Kinect-based interface for 3D animation. In Proc.
ACM UIST, 2012.

[7] N. Kyriazis and A. Argyros. Physically plausible 3D scene
tracking: The single actor hypothesis. In Proc. 26th CVPR,
2013.

[8] D. G. Lowe. Robust model-based motion tracking through
the integration of search and estimation. IJCV, 8(2):113–
122, 1992.

[9] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,
D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and
A. W. Fitzgibbon. KinectFusion: Real-time dense surface
mapping and tracking. In Proc. 10th ISMAR, 2011.

[10] I. Oikonomidis. Tracking the articulated motion of two
strongly interacting hands. In Proc. 25th CVPR, 2012.

[11] I. Oikonomidis, N. Kyriazis, and A. A. Argyros. Efficient
model-based 3D tracking of hand articulations using Kinect.
In Proc. 22th BMVC, 2011.

[12] I. Oikonomidis, N. Kyriazis, and A. A. Argyros. Full DOF
tracking of a hand interacting with an object by modeling oc-
clusions and physical constraints. In Proc. 13th ICCV, 2011.

[13] V. A. Prisacariu and I. D. Reid. PWP3D: Real-time seg-
mentation and tracking of 3D objects. In Proc. 19th BMVC,
2009.

[14] C. Y. Ren, V. Prisacariu, D. Murray, and I. Reid. STAR3D:
Simultaneous tracking and reconstruction of 3D objects us-
ing RGB-D data. In Proc. 14th ICCV, 2013.

[15] C. Y. Ren and I. D. Reid. A unified energy minimization
framework for model fitting in depth. In Proc. 12th ECCV
Workshops, 2012.

[16] R. Smith. Open Dynamics Engine, 2006. http://www.
ode.org/.

[17] J. Sturm, E. Bylow, F. Kahl, and D. Cremers. CopyMe3D:
Scanning and printing persons in 3D. In Proc. GCPR, 2013.

[18] R. Ueda. Tracking 3D objects with Point Cloud Library,
2012. pointclouds.org.

