
Simultaneous 3D Tracking and Reconstruction on a Mobile Phone
Victor Adrian Prisacariu∗

University of Oxford
Olaf Kähler†

University of Oxford
David W. Murray‡

University of Oxford
Ian D. Reid§

University of Adelaide

ABSTRACT

A novel framework for joint monocular 3D tracking and reconstruc-
tion is described that can handle untextured objects, occlusions, mo-
tion blur, changing background and imperfect lighting, and that can
run at frame rate on a mobile phone. The method runs in parallel (i)
level set based pose estimation and (ii) continuous max flow based
shape optimisation. By avoiding a global computation of distance
transforms typically used in level set methods, tracking rates here
exceed 100Hz and 20Hz on a desktop and mobile phone, respec-
tively, without needing a GPU. Tracking ambiguities are reduced
by augmenting orientation information from the phone’s inertial
sensor. Reconstruction involves probabilistic integration of the 2D
image statistics from keyframes into a 3D volume. Per-voxel poste-
riors are used instead of the standard likelihoods, giving increased
accuracy and robustness. Shape coherency and compactness is then
imposed using a total variational approach solved using globally
optimal continuous max flow.

1 INTRODUCTION

Object-wise 3D reconstruction is a cardinal problem in computer
vision, with much work being dedicated to it throughout recent
years. Most current techniques however require, on the one hand
powerful hardware for any sort of timely inference and, on the
other, a complicated extrinsic camera calibration procedure, con-
trolled lighting and accurate pre-existing segmentations.

The aim of our work is to eliminate such constraints and pro-
vide a system that (i) can work in a real world environment, under
real world conditions and (ii) has a computational cost that is low
enough to allow it to run in real time on a mobile phone, without
any additional hardware. We believe that such a solution has the
potential of “democratising” 3D object reconstruction (and track-
ing) much in the same way current research is doing, for example,
for 3D articulated pose recovery or panorama stitching.

In this work we recover both 3D shape and 3D pose simultane-
ously and in parallel. Tracking is region and level set based and
uses nonlinear optimisation to find the 3D rigid pose that leads to
a maximal separation between foreground and background image
areas with known statistics. This makes it robust to image artefacts,
as caused, for example, by occlusions or motion blur. The imple-
mentation of such a tracker boils down to repeated renderings of a
3D model and computations of a level set embedding function (i.e.
distance transform) of the rendering. Because of this, related track-
ing approaches have inevitably had very high computation costs,
making real time performance only possible using GPU processing.
We instead use a hierarchical rendering pipeline, avoid the global
computation of the distance transform and its derivatives and aug-
ment the image data with orientation information from the mobile
phone’s inertial sensor (IMU). This allows for real-time (over 20

∗e-mail: victor@robots.ox.ac.uk
†e-mail: olaf@robots.ox.ac.uk
‡e-mail: dwm@robots.ox.ac.uk
§e-mail: ian.reid@adelaide.edu.au

fps) performance even on a mobile phone, without the use of GPU
hardware. On a desktop PC speeds of over 100 fps are possible.

Reconstruction is keyframe based and is split into two phases. At
each keyframe, we back-project 2D image statistics of foreground
and background (extracted from the camera image) and fuse them
into 3D probability volumes capturing inside/outside probability.
This means that, unlike most current research, we do not require
prior object segmentation at every frame. Furthermore, we use per-
voxel posteriors, which leads to an increase in accuracy and ro-
bustness to imperfect image statistics over the standard approach
of using likelihoods. After a number of registered keyframes, we
impose shape coherency and compactness using a globally optimal
total variational / continuous max flow approach.

The paper is structured as follows. We begin in Section 2 with
an overview of recent advances in tracking and reconstruction and
summarise how they relate to our method. We continue in Section
3 with a description of the graphical model and notation underlying
our method. The tracking and reconstruction parts of our algorithm
are detailed in Sections 4 and Section 5, respectively. Implementa-
tion details are given in Section 6 and results are shown in Section
7. We conclude in Section 8.

2 RELATED WORKS

From the point of view of tracking fixed 3D shapes, our work is
related to region-based tracking. This idea was originally proposed
in [16], where the Chan-Vese level set energy function [20] is min-
imised in a two step process, first in an unconstrained manner and
second wrt. the 6 DoF pose of the known 3D shape. This two stage
approach was later removed in favour of an approximate pose-only
evolution in [18]. Our work is most similar to the related, but more
recent work of [13] and [15]. These are variational formulations
of [16], minimising the pixel-wise posteriors level set energy func-
tion of [2] directly wrt. 3D pose, using gradient descent. The main
difference between these approaches lies in the 3D shape represen-
tation, [13] using a 3D mesh and [15] using a volumetric 3D signed
distance transform. Here we use a volumetric representation, but
otherwise follow a mathematical formalism very similar to that of
[13]. Our novelty however is in the computation of the gradient.
Whereas [13] require a GPU and achieve a performance maximum
of 25 fps and [15] a maximum of 10 fps, in this work we are able to
achieve almost the same speed on a mobile phone, and considerable
higher speeds on a desktop PC, both without using a GPU.

Our method is also related to [22, 3, 14] in its use of joint visual-
IMU pose recovery. Unlike these works however, here we use a
very lightweight fusion mechanism, with the IMU serving as the
main source of rotation, with occasional visual-based corrections.

The reconstruction part of our method is primarily related to
methods that recover the visual hull from silhouettes using energy
minimisation techniques, examples being [21, 19, 5, 4, 8]. Of these,
the approach proposed in [21] locally minimises the reprojection er-
ror between surface and observed image intensities, making it slow
and subject to local minima. The other approaches follow the re-
verse strategy, by backprojecting the binary segmented views (in
[19]) or image statistics extracted from the views (in [5, 4] and [8])
into 3D volumetric representations. All these methods use globally
convergent nonlinear minimisation, graph-cuts in [19, 5, 4] and to-
tal variational primal-dual optimisation in [8]. In this work, similar
to [5, 4, 8] we backproject image statistics into a 3D volumetric

p

M yФ x

vu

n

Figure 1: Graphical model for our method

representation. Unlike those works however, we use voxel poste-
riors instead of likelihoods, which leads to better performance and
robustness. Similar to these methods we use a globally convergent
optimisation in the form of continuous max flow [23]. This is much
faster than the related but discrete graph cuts used in [5, 4, 19] and
has faster convergence compared to the primal-dual total variational
optimisation used in [8]. Finally, unlike all these works, we do not
assume given poses, controlled lighting or static environments, but
rather use tracker estimated poses.

Such simultaneous reconstruction and tracking has also been at-
tempted before, with two recent representative methods being [11]
and [1]. In [11] the authors assume a static background and track
and reconstruct a feature point cloud. The convex 3D shape is then
built using Delaunay tetrahedralisation. A static background is also
assumed in [1], where the camera pose is tracked using PTAM [7].
The object is segmented in each frame using graph cuts and the
segmentations are merged into a 3D volume using a voting based
fusion method. In this work we require no explicit per frame seg-
mentation and no point features, either in the environment or on
the object. Therefore the environment can be fully dynamic and the
system is robust to occlusions and motion blur while still being fully
principled (i.e. not requiring ad-hoc silhouette fusion approaches).

A final category of related works included systems for simul-
taneous localisation and mapping (SLAM) such as PTAM [7] and
DTAM [9]. These attempt to track and reconstruct the full envi-
ronment presented to the camera, producing sparse [7] or dense [9]
reconstructions. We limit our model of the world to the actual ob-
ject that we intend to reconstruct, whereas PTAM and DTAM build
a model of everything observed by the camera. Of course the ob-
ject can be segmented out of the full scene model afterwards and the
reconstruction step might even benefit from having a broader field
of reference as the observed background will most certainly pro-
vide additional constraints for estimating the camera motion. How-
ever performance of such systems may degrade in dynamic environ-
ments, i.e. with people walking in the background. By modelling
only the object and ignoring the rest of the scene, dynamic move-
ments, light changes and anything else not captured by our model
are completely ignored as long as they only affect the background.

3 GRAPHICAL MODEL

Figure 1 shows the graphical model describing our method. An
overview of the practical implementation is shown and discussed in
Section 6. The 3D shape we track and reconstruct is denoted with
the random variable u. We use a volumetric shape representation
which makes u a distribution over 3D volumes, with probability 0
identifying voxels outside the shape and 1 inside. The maximum
likelihood estimate of the outline of the shape is the 0.5 level set of
u. We denote by v a distribution over voxels in this volume.

We assume a known set of n views. For each of these views,
we denote the distribution over 3D poses of the 3D object with
p. We use the standard six degree of freedom representation for

pose (three for translation and three for Rodrigues parametrised ro-
tation). The contour of the projection of u under the pose p is em-
bedded inside a 2D signed distance transform (SDF), which we de-
note by Φ. Similarly, a voxel v under the pose p projects to a pixel
location x. In Figure 1 we denote these deterministic relationships
with dotted lines. Note that in this work we consider the 3D poses
to be independently distributed. This could be changed, allowing
for a motion model to be added.

Each pixel location x has a corresponding colour y. As with
other region-based methods, we assume as known a pair of per-
view foreground / background colour models, which we denote by
M ∈ {M f ,Mb}. Here these are 32×32×32 bin RGB histograms.

Joint inference on the full graphical model is not tractable, espe-
cially on a mobile device. As other works have done before us, we
therefore chose to split the inference into a tracking stage, i.e. an
estimation of the pose p and a reconstruction stage, i.e. an estima-
tion of the shape u. In the interest of brevity we use u, v and p to
denote both estimate and respective probability distribution for the
remainder of the paper.

4 POSE OPTIMISATION

The projection of a known 3D shape u, given a pose p, separates
any image into a foreground and a background region. Assum-
ing known colour statistics for these regions (M ∈ {M f ,Mb} in the
graphical model), the pose optimisation aims to maximise the dis-
crimination between foreground and background wrt. the pose p.
The theoretical foundations of this approach have been introduced
in [13], and we summarise them in the following.

Treating u and v as known in the graphical model, the joint prob-
ability becomes similar to the one presented by Bibby and Reid in
[2] for the case of 2D tracking and segmentation. This is written as:

P(x,y,Φ,M) = P(x|Φ,M)P(y|M)P(M) (1)

where we omitted P(Φ) and P(p) as we consider all SDFs and poses
equally likely.

Marginalising wrt. the colour models we obtain

P(Φ|Ωp) = ∏
x∈Ωp

{
∑
M

P(x|Φ,M)P(M|y)
}

(2)

with Ωp being the 2D image domain and

P(xi|Φ,M f) =
He(Φ(xi))

η f
P(xi|Φ,Mb) =

1−He(Φ(xi))

ηb
(3)

where He denotes the smoothed Heaviside function (commonly
used in level set based tracking and segmentation).

The colour posteriors are written as follows:

P(M j|y) =
P(y|M j)P(M j)

∑i∈ f ,b P(y|Mi)P(Mi)
P(M j) =

η j

η
(4)

where j ∈ { f ,b}, η j is the number of foreground and background
pixels respectively and η is the total number of pixels in Ωp. This
choice of posteriors has been shown by [2, 13] to produce better
separation between foreground and background over the standard
approach of using likelihoods, which in turn leads to more accurate
3D tracking.

Switching to log probabilities, we write:

E = log(P(Φ|Ωp)) = ∑
x∈Ωp

log(He(Φ)Pf +(1−He(Φ))Pb (5)

with

Pf =
P(y|M f)

η f P(y|M f)+ηbP(y|Mb)
Pb =

P(y|Mb)

η f P(y|M f)+ηbP(y|Mb)
(6)

xi

xi+1

[x-1, y] [x, y]

Figure 2: Geometric explanation for the computation of the deriva-
tive of the distance transform.

This energy function captures separation between foreground
and background wrt. the 2D shape embedded in Φ. In our case
this shape is generated as the projection of the 3D shape u using the
pose p. This casts the problem of maximising fg/bg separation as
one of optimising E wrt. p using standard gradient-based methods.
This requires evaluating the following derivative:

∂E
∂p

= ∑
x∈Ωp

δe(Φ)(Pb−Pf)

He(Φ)Pf +(1−He(Φ))Pb

(
∂Φ

∂x
∂x
∂p

+
∂Φ

∂y
∂y
∂p

)
(7)

with δe the derivative of the smoothed Heaviside function and x
and y the 2D coordinates of points situated on the contour of the
projection of the 3D shape. The remaining derivatives ∂Φ/∂x and
∂Φ/∂y are computed numerically and ∂x/∂p and ∂y/∂p follow
trivially as detailed in [13].

The framework presented above has been shown to produce state
of the art results in region based 3D tracking [13]. This however
comes at the expense of high computational cost, as the projection
(i.e. rendering) of the 3D shape and the distance transform Φ of this
projection have to be computed once per iteration. This means that
a real time implementation is only possible using GPU processing.
Even so, speeds higher than 20-25 fps are not easily achieved.

In the remaining part of this section we address the three main
speed bottlenecks of this approach: (i) the rendering of the 3D
shape, (ii) the computation of the SDF and its derivatives and (iii)
the optimisation method. We also discuss the issue of silhouette
ambiguity, which concerns tracking reliability instead of speed, but
is especially important when doing 3D reconstruction.

Hierarchical Binary Rendering. We use a volumetric repre-
sentation for the shape u. The established method for rendering a
3D shape represented in such a way is to use a raycasting algorithm
[9]. Unfortunately this operation is prohibitively slow without GPU
hardware, especially on a mobile phone. Our tracker however only
needs a binary rendering with depth only for the pixels located on
the edge of that rendering. With this in mind, we chose to do the
raycasting operation in a hierarchical manner. We initially raycast a
very low resolution image (e.g. 40×30 pixels). We then resize this
image by a factor of two, raycast the pixels around the edge and in-
terpolate the others. The process is repeated multiple times until the
desired resolution is reached. On a 640× 480 image, this process
results in a speedup of over 10× over a standard CPU-based raycast
and has the added benefit of producing a resolution hierarchy.

Distance Transform and Derivatives. Our pose optimisation
method requires several computations of a 2D SDF for each frame.
On a mobile phone, standard SDF computation algorithms take
many tens of milliseconds to process a single image, so they are
too slow for our purposes.

The Euclidean SDF of a contour is designed to increase linearly
in the direction normal to the contour. This observation leads to

our approximate SDF Φ, where, for a contour point at location x,
we increase the value of Φ linearly from a value of −d at location
x− dn to a value of +d at location x+ dn. Here n is the normal
to the contour at location x, and is computed by applying a Scharr
operator [17] to the raycasted binary image.

This is an approximation of the full SDF from two points of view.
First, we only compute a local, per contour point SDF, in a 2d band
around the contour. Since the informative part of the SDF is only
situated close or on the actual contour points, this approximation
has virtually no effect on the final pose optimisation result, as we
show in Section 7. Second, the approximation might produce incor-
rect distance values around concavities of the contour, but again this
did not adversely affect the final outcome of the pose optimisation.

We also need to compute the values of the derivatives ∂Φ/∂x
and ∂Φ/∂y. Numerically, these can be obtained with the centred
finite differences approximation, using, for example:

∂Φ

∂x
=

Φ([x+1,y])−Φ([x−1,y])
2

(8)

In this work we obtain the values of Φ([x + 1,y]),Φ([x −
1,y]),Φ([x,y−1]) and Φ([x,y+1]) without explicitly evaluating Φ.
The way we do this is represented geometrically in Figure 2. Given
two contour points xi and xi+1, the contour segment linking them
is represented in green. Two example normals to this line segment
are drawn in black, with arrows. These pass through the centre of
the segment [x,y] and the point [x−1,y]. The value of Φ([x−1,y])
here then becomes equal to the signed distance between [x,y] and
the projection of [x+ 1,y] on the normal passing through [x,y]. In
Figure 2 this is the signed distance of the line segmented drawn in
blue. The process is identical for [x+1,y], [x,y−1] and [x,y+1].

Optimisation method. Our raycaster produces a hierarchy of
object renderings. We use this to speed up our tracker, replacing
costly high resolution iterations with cheaper low resolution ones,
resulting in a 2-3× speedup. We use the Levenberg-Marquardt
(LM) algorithm to minimise our energy function at each hierarchy
level.

Silhouette Ambiguity. The mapping from silhouette to pose is
ambiguous, as 3D rigid objects often project to the virtually iden-
tical silhouettes, in spite of being under different poses. We ex-
perimentally investigate the effect of this ambiguity on tracking in
Figure 5, showing that silhouette-only tracking and reconstruction
is effectively impossible. Inspired by [14], we use the IMU readily
available on the mobile phone to disambiguate rotation.

The relation between the two pose estimations is depicted in Fig-
ure 3. R(t−1)

p and R(t)
p are the rotation matrices of the object in the

camera coordinate system, at the previous frame and current frame,
respectively. Similarly, R(t−1)

a and R(t)
a are consecutive rotation ma-

trices of the camera in the phone coordinate system. Finally, C is
the calibration rotation matrix, converting the visual to the IMU co-
ordinate systems and is preset for each type of device. Therefore:

R(t)
p =CR(t)

a

(
R(t−1)

a

)−1
C−1R(t−1)

p (9)

Between consecutive frames we only optimise for translation,
using as rotation estimate the change given by the IMU. To com-
pensate for IMU drift, we use one gradient descent rotation-wise
iteration every ten frames. We do not use LM for rotation as due to
ambiguity we only trust the visual rotation estimate to correct for
slight drift, not to fully dictate the pose.

5 SHAPE OPTIMISATION

The shape optimisation assumes known pose and per pixel fore-
ground or background likelihoods for each of the n views. These
are back-projected into a pair of 3D likelihood volumes, capturing
the probability that a voxel v belongs to the inside and outside of the

Inertial sensor

Camera

Ra
(t)Ra

(t−1)R p
(t−2)Ra
(t−2)... ...

R p
(t)R p

(t−1)R p
(t−2)R p
(t−2)... ...

Preset calibration C

Figure 3: IMU integration.

shape, respectively. The likelihoods are next turned into posteriors,
in a manner similar to the one presented in the previous section. Fi-
nally, the 3D shape u is extracted from the two posterior volumes,
looking to maximise inside/outside separation. This framework is
similar to the established one of [8, 5], but here we use voxel poste-
riors instead of likelihoods and account for the online accumulation
of views. Note that an alternative approach would have been to fuse
individual per-view segmentations (obtained using e.g. per-view
graph-cuts) instead of probabilities. This approach has been shown
in [8] to produce inferior results, because (i) individual segmenta-
tions often tend to be poor (because of e.g. shadows and reflections)
and (ii) the camera pose is not perfectly known (so silhouette un-
certainly has to be accounted for).

Considering x and Φ as known in the graphical model, the joint
probability becomes:

P(u,v,M1...n,y1...n) = P(v|u,M1...n)P(y1...n|M1...n)P(M1...n) (10)

Expanding, we write:

P(u|Ωs) = ∏
v∈Ωs

{
∑

j∈ f ,b
P(v|u,M j,1...n)P(M j,1...n|y1...n)

}
(11)

where Ωs is the 3D domain of voxels v and:

P(M j,1...n|y1...n) =
P(y1...n|M j,1...n)P(M j,1...n)

∑i∈ f ,b P(y1...n|Mi,1...n)P(Mi,1...n)
(12)

P(v|u,M f ,1...n) =
u
ζ f

P(v|u,Mb,1...n) =
1−u

ζb
(13)

with ζ f and ζb being the average number of voxels (over all views
n) that project to a foreground pixel (with P(y|M f)> P(y|Mb)) and
a background pixel, respectively.

The final two probabilities P(y1...n|M1...n) and P(M1...n) should
be computed as the joint probabilities of P(yk|Mk) and P(Mk), with
k ∈ 1 . . .n. As observed by [8], this joint probability cannot easily
be computed numerically, as it tends to be a product of very small
numbers. The authors in [8] used the geometric mean to obtain
average probabilities. We proceed in a similar manner, and write:

P(y1...n|M f ,1...n) = exp
(

∑
n
k log(P(yk|M f ,k))

n

)
(14)

P(y1...n|Mb,1...n) = 1− exp
(

∑
n
k log(1−P(yk|Mb,k))

n

)
(15)

The probability of the colour model over n views becomes
P(M f ,1...n) = η f m/η with η f m being the average value of η f (as
defined in Equation (4)) over the n views. P(Mb,1...n) follows anal-
ogously.

The final expansion of P(u|Ωs) becomes:

E = P(u|Ωs) = ∏
v∈Ωs

{uPi +(1−u)Po} (16)

Pi =
η f m

ζ f

P(y1...n|M f ,1...n)

P(y1...n|M f ,1...n)η f m +P(y1...n|Mb,1...n)ηbm
(17)

Po =
ηbm

ζb

P(y1...n|Mb,1...n)

P(y1...n|M f ,1...n)η f m +P(y1...n|Mb,1...n)ηbm
(18)

One way to optimise Equation (16) is to consider u as the
smoothed Heaviside of a 3D level set embedding function. This
method is subjected to local minima and requires the SDF structure
to be maintained. When u is a probabilistic 3D volume however,
[10] shows that u can be solved for globally using convex optimi-
sation.

The globally solvable formulation for our reconstruction is ob-
tained by replacing the logarithmic option pool with a linear one in
Equation (11) and adding a weighted length regularization term:

E = ∑
v∈Ωs

{uPi +(1−u)Po +α|∇u|} (19)

where α is a tunable parameter.
To minimise such an energy function the authors in [8] use the

primal-dual algorithm of [12]. We use the continuous min-cut /
max-flow formulation of [23], which leads to considerably faster
convergence compared to [12]. In a max flow context, minimising
Equation (16) wrt. u such that u∈ [0,1] is equivalent to minimising:

E = max
pt ,ps,p

min
u ∑

v
{upt +(1−u)ps +u divp} (20)

such that ps(v)< Pi(v), pt(v)< Po(v) and |p(v)|< α . In the con-
text of max-flow, p, ps and pt are flow capacities, for undirected
edges for p, between nodes and source for ps and between nodes
and sink for pt [23].

The continuous max-flow algorithm of [23] is iterative and uses
the augmented Lagrangian function of Equation (20), defined as:

Lc(ps, pt , p,u) =

∑v{upt +(1−u)ps +u divp}− c
2 || divp− ps + pt ||2 (21)

where c is a constant step size. This Lagrangian is used to minimise
Equation (20) wrt. p, ps and pt in turn. For the k-th iteration of the
algorithm the authors in [23] write:

p(k+1) = argmax
||p||∞≤α

Lc(pk
s , pk

t , p,uk) (22)

p(k+1)
s = argmax

ps(v)<Pi(v)
Lc(ps, pk

t , pk,uk) (23)

p(k+1)
t = argmax

pt (v)<Po(v)
Lc(pk

s , pt , pk,uk) (24)

u(k+1) = u(k)− c(div p(k+1)− p(k+1)
s + p(k+1)

t) (25)

The optimisation is started by setting u = Pi−Po where Pi > Po and
zero otherwise, and ps = pt = min(Pi,Po).

So far we have assumed that all n frames are available simulta-
neously. This is of course not true, as we run our algorithm online,
and it implies three changes on the reconstruction methodology.

First, the likelihood volumes P(y1...n|M1...n) and the values of
ζ f ,ζb,η f m and ηbm change from being accumulated only once for
all n views, to being updated online after every new frame.

Second, after running the max flow algorithm, we rescale the
non-zero region of interest in the 3D volume u to fill the volume,

with a constant padding. This mitigates the effects of scale drift and
helps us use the full representational power of the discretisation.

Third, instead of running a single full convergence of the contin-
uous max flow optimisation after all n views have been registered,
we run a single iteration for every ten views that have been regis-
tered. We run only one iteration for real-time considerations and
as the final estimate will change with update input data anyway.
This leads to another problem, namely how to transfer the interme-
diary shape results from one reconstruction to the next. This is not
straightforward, as, especially in the early stages of the reconstruc-
tion process, large portions of the estimated 3D shape might change
and the intermediary values for u are far from the globally optimal
shape embedded by the updated posterior volumes.

To alleviate this problem we propagate the intermediary values
of the 3D shape by conditioning P(v|u,M f ,1...n) and P(v|u,Mb,1...n)

on the previous 3D reconstruction u(t−1). Intuitively, this means
that the probabilities of a voxel being inside or outside the 3D shape
should increase if the voxel was inside or outside, respectively, at
the previously available reconstruction. Formally this changes:

P(v|u,M f ,1...n) to P(v|u,u(t−1)
i ,M f ,1...n) =

uu(t−1)
f

ζ f
(26)

P(v|u,Mb,1...n) to P(v|u,u(t−1)
o ,Mb,1...n) =

(1−u)u(t−1)
b

ζb
(27)

with:

u(t−1)
i = β −1+βu(t−1) u(t−1)

o = β −1+β (1−u(t−1)) (28)

where β is a tunable parameter (0.5 in our implementation).
The change in voxel probabilities also leads to slightly different

formulas Pi and Po, which are trivial to compute.

6 IMPLEMENTATION AND TIMINGS

The previous sections presented our theoretical framework. In this
section we cover important aspects of a practical implementation
capable of running in real time on a mobile phone.

Algorithm 1 Image acquisition + 3D tracking thread

1: read and fuse the IMU data. This is done using CoreMotion
provided by the Apple iOS SDK.

2: build the interpolated colour models M f and Mb.
3: compute tracking image statistics: Pf and Pb
4: if thread 2 reconstruction is complete then
5: copy reconstructed shape to tracking thread memory.
6: end if
7: track object in new frame using current shape approximation.
8: if new frame is keyframe and reconstruction processing has fin-

ished then
9: transfer image statistics to reconstruction thread

10: start reconstruction thread
11: end if

Inspired by [7], we decouple tracking from reconstruction by us-
ing two threads: one for image acquisition and 3D tracking and the
other one for reconstruction.

The camera and tracking thread proceeds as described in Al-
gorithm 1. As discussed in Section 4, we use the Levenberg-
Marquardt algorithm for tracking. The method used to compute
the derivative wrt. pose is outlined in Algorithm 2.

The reconstruction thread proceeds as described in Algorithm
3. Similar to the map update stage from [7], we only register
keyframes into the likelihood/posterior volumes. A frame is con-
sidered to be a keyframe if (i) at least ten frames have passed from

Algorithm 2 Pose derivative evaluation

1: project current approximation of the 3D shape with current
approximation of the pose, using our hierarchical raycasting
method.

2: find contour points using Scharr filtering.
3: for each contour point, with location [x,y] do
4: compute SDF derivatives ∂Φ

∂x and ∂Φ

∂y

5: compute derivatives wrt. pose ∂x
∂p and ∂y

∂p
6: end for
7: compute and sum per-point derivatives of the energy function

from Equation (7).

Algorithm 3 Reconstruction thread

1: update P(y1...n|M f ,1...n) and P(y1...n|M f ,1...n) using the image
statistics from the new frame

2: if has enough new registered keyframes then
3: compute reconstruction statistics Pi and Pb
4: find a new approximation for the 3D shape u using contin-

uous max flow.
5: rescale shape to fill 3D volume.
6: end if

the previous keyframe and (ii) the rotation read from the IMU has
not been observed by more than five times. We allow each rotation
multiple times to accommodate updates due to improved pose esti-
mates. Alternatively, we could have used the translation estimate in
the keyframe selection and allowed each keyframe to be registered
only once, but, experimentally, we found our solution to lead to bet-
ter results. Also, once a critical mass of frames has been obtained
(in our experiments 1500 frames), novel frames do not improve
shape accuracy, and we can re-track and re-register previous ones.

One other important implementation detail is the initialisation of
the colour models M f and Mb. Here we require the user to move
around the object at a few positions (5 to 10) and initialise the ob-
ject and background statistics. Automatic method for model ini-
tialisation, such as used in [4] could also be employed, but this is
beyond the scope of the current publication. On the mobile phone
the user can do this very easily by keeping the object centred and
adjusting a slider which changes the threshold value of a binarisa-
tion algorithm. On the desktop we manually generate binary fore-
ground / background masks. For each labelled sample image we
also know the IMU rotation, which allows us to produce at run time
a per-view pose-dependant pair of colour models, using linear in-
terpolation weighted by distance in rotation space. The final colour
models are built by composing the pose-dependant colour model
with an online adapted component, using linear interpolation.

Example timings for our method are shown in Table 1, obtained
for the sequence shown in Figure 10. We run the tracker at every
frame which works at 107.4 fps on a desktop PC (Intel Core i7-
3960X 3.3GHz CPU) and 23.04 fps on an iPhone 5. Performance
degrades roughly 25% on a lower end iPhone 4S. This makes recon-
struction not feasible on lower end devices, but tracking still possi-
ble. For tracking we use a 128×128×128 volume on the desktop
PC and 64×64×64 volume on the mobile phone. The reconstruc-
tion stages run simultaneously with tracking and are executed at
most every 10th and every 100th frame, respectively. Both desktop
PC and iPhone use 128×128×128 volumes for reconstruction.

7 RESULTS

We have tested our method quantitatively and qualitatively, both on
artificial and real data, in static and dynamic environments.

Quantitative Testing. We begin in Figure 4 with a quantitative

0 50 100 150 200 250
−15

−10

−5

0

5

10

15
Translation X axis

0 50 100 150 200 250
−15

−10

−5

0

5

10

15
Translation Y axis

0 50 100 150 200 250
−15

−10

−5

0

5

10

15
Translation Z axis

0 50 100 150 200 250
−40

−20

0

20
Rotation X axis

0 50 100 150 200 250

−60

−40

−20

0

Rotation Y axis

0 50 100 150 200 250
−20

−10

0

10

20
Rotation Z axis

SLAM system

Tracker of [13]

Our tracker

Figure 4: Comparison between the camera pose recovered by the SLAM system of [7], our tracker and the tracker of [15]. The filmstrip
shows frames from the experiment, with the top row showing our results and the bottom row the results from [15].

Table 1: Per frame example timings for our method.

Tracking Frame registration Max flow
Desktop PC 9.3ms 18ms 102ms
iPhone 5 43.3ms 198ms 667ms

comparison between the PTAM system [7], our tracker and the one
presented in [15], which minimises the same energy function in a
fully analytical manner, without any approximations. The results
produced by the object trackers are nearly identical. Compared to
the SLAM system, [15] produced a difference of 0.96 cm and 1.98o.
Our tracker has an average difference of 1.13 cm and 2.52o. The
improvement of 0.17 cm and 0.54o in [15] comes however as the
expense of twice the processing time and requiring a powerful GPU.

Figure 5 shows a quantitative comparison between our tracker
with and without using the IMU and PTAM [7]. Without the IMU,
the average difference between tracker and SLAM is 12.86 cm in
translation and 11.97o in rotation. With the IMU the difference de-
creases to an average of 1.14cm in translation and 1.27o in rotation.
The very large difference incurred when the IMU is not available
is due to silhouette ambiguity, as shown in columns 2, 4 and 6 of
Figure 5(top). The silhouette provides too little information for an
accurate rotation estimation and the optimisation converges to a in-
correct local minima. When aided by the IMU, rotation is no longer
ambiguous and the overall tracking errors become much smaller.

Note that in both of the above tests, the difference between track-
ers and SLAM is caused by one using information from only around
the projected contour, whereas the other using the whole image.
Furthermore, while the PTAM system is more likely to be closer to
the ground truth, it is not guaranteed to be the actual ground truth.

Figures 6 and 7 show quantitative comparisons between the re-
construction obtained using the posterior voxel probabilities pre-
sented in this paper and the likelihoods used in [8], which we con-

sider as current state-of-the-art. Here we generated artificial ground
truth data using two 3D models, the upper body shown in Figure
6 and the car shown in Figure 7. The two generated sequences
showed the respective object rotated on each axis between −180o

and 180o and translated by a random amount. We ran the recon-
struction algorithm using the two types of voxel statistics with four
configurations: (i) ground truth histograms and known pose (Figs.
6 and 7, left chart); (ii) ground truth histograms and rotation and op-
timisation for translation (Figs. 6 and 7, left chart); (iii) noisy his-
tograms and known pose (Figs. 6 and 7, right chart) and (iv) noisy
histograms, known rotation + optimisation for translation (Figs. 6
and 7, right chart).

For each figure, the red contour in the lower left figures shows
the area of foreground that was added to the estimation of the back-
ground histogram in order to corrupt it. The matching score plotted
in the four charts is the standard intersection vs reunion measure of
overlap [6], evaluated between ground truth and reconstructed vol-
ume. Note that we do not run any shape alignment since all versions
of the algorithm should produced aligned shapes.

When the histograms are not noisy all four methods produce sim-
ilar results, with the best results being obtained when using posteri-
ors and ground truth poses. Likelihoods favour thicker reconstruc-
tions while posteriors favour thinner ones. This is particularly visi-
ble when using estimated translation in Figure 6. Here the posteri-
ors lead to a decrease in accuracy around the hands, whereas like-
lihoods have same effect around the upper arms. Overall however
all four methods lead to the roughly similar errors. The differences
between posteriors and likelihoods become much more pronounced
when the histograms are imperfect, such as would often be the case
in real world usage. Likelihoods lead to much worse results, up to
the point where using posteriors and estimating translation leads to
better results than using likelihoods with ground truth pose.

Qualitative Testing. The remaining five figures (8, 9, 10,
11 and 12) show qualitative reconstruction results obtained on real

0 500 1000

−20

0

20

Translation X axis

0 500 1000

−20

0

20

Translation Y axis

0 500 1000

−20

0

20

Translation Z axis

0 500 1000
−50

−40

−30

−20

−10

0

10
Rotation X axis

0 500 1000
−20

0

20

40

60
Rotation Y axis

0 500 1000

−20

0

20

40
Rotation Z axis

Our tracker,
without IMU

SLAM system

Our tracker,
with IMU

Figure 5: Comparison between the SLAM system of [7] and our tracker with and without the IMU. The filmstrip shows frames from the
experiment with row 1 showing the original image, row 2 the result obtained without the IMU and row 3 the results obtained with the IMU.

0 100 200 300 400 500 600 700

0.4

0.5

0.6

0.7

0.8

0.9

1
Ground Truth Image Statistics

0 100 200 300 400 500 600 700

0.4

0.5

0.6

0.7

0.8

0.9

1
Noisy Image Statistics

Voxel Posteriors + Perfect Pose

Voxel Likelihoods + Perfect Pose

Voxel Posteriors + Estimated Translation

Voxel Likelihoods + Estimated Translation

Figure 6: Reconstruction comparison between our system and that of [8]. The top 2 rows show views of the 3D reconstructed shape, with the
lower left figures showing in red the foreground area that was added to the background histogram to corrupt it. Results obtained with ground
truth histograms appear in the left chart and top row and results obtained with imperfect histograms in the right chart and bottom row.

0 50 100 150 200 250 300 350
0.4

0.5

0.6

0.7

0.8

0.9

1
Ground Truth Image Statistics

0 50 100 150 200 250 300 350
0.2

0.4

0.6

0.8

1
Noisy Image Statistics

Voxel Posteriors + Ground Truth Pose

Voxel Likelihoods + Ground Truth Pose

Voxel Posteriors + Estimated Translation

Voxel Likelihoods + Estimated Translation

Figure 7: Reconstruction comparison between our system and that of [8]. The top 2 rows show views of the 3D reconstructed shape, with the
lower left figures showing in red the foreground area that was added to the background histogram to corrupt it. Results obtained with ground
truth histograms appear in the left chart and top row and results obtained with imperfect histograms in the right chart and bottom row.

data. In each figure, the first three columns of the film strip show
the beginning of the reconstruction process and are taken within
the first 50 processed keyframes. The next two columns show re-
sults obtained around the 300-400 keyframe mark. The last column
shows the final result obtained after a maximum of 1000 keyframes.
Figures 8 and 9 show our reconstruction working in a museum, in
a fully unstructured and dynamic environment, corrupted by occlu-
sions, reflections and imperfect illumination. Our method obtains
good results, with artefacts appearing only around the head of each
figure. These are caused by specular reflections, which changed the
colour of the object from red and black respectively to white. To
our knowledge, no other object reconstruction method could pro-
cess these videos because of the large number of image imperfec-
tions. Figures 10, 11 and 12 show reconstruction results obtained in
a slightly better lit office environment. In all three cases we can ob-
tain very good reconstructions, with the shape usually converging
with 300 to 400 keyframes (i.e. 3-4 minutes of data at an average of
2-3 keyframes per second). The one exception is the horse shown in
Figure 12 which requires up to 1000 keyframe to recover the legs.

Failure Cases. The long processing time required to recover the
legs of the horse in Figure 12 and the loss of the hand in Figure 6
highlight the main failure case of our algorithm, namely its brittle-
ness when dealing with thin structures. These occupy a small area
in the image which might not be enough to “pull” the 3D tracker
into the right direction. This leads to an inaccurate translation re-
covery, which in turn diminishes the amount of backprojected view
overlap around the thin parts of the shape, causing low voxel prob-
ability around the same areas and thus slow convergence or an in-
correct reconstruction. Another possible source of failure in our
system is rotation drift. Limited amounts of drift are compensated
for using the visual rotation optimisation, but large amounts of drift
result in decreased tracking and subsequently rotation accuracy.

8 CONCLUSIONS

In this paper we proposed a novel framework for simultaneous 3D
reconstruction and tracking. Tracking is cast as a minimisation in
3D pose space of a region based level set energy function, which
measures separation between image foreground and background.

Unlike other approaches, we use a local instead of a global com-
putation of the signed distance transform and its derivatives and
obtain fast 3D shape renderings using hierarchical raycasting. This
enables our tracker to achieve real time performance on a mobile
phone and speeds of over 100 fps on a desktop PC, without using
GPU acceleration. We currently require a high-end mobile phone
(an iPhone 5), but this is a temporary limitation that will disappear
over time. Rotation is disambiguated using the IMU available on
mobile phones. Reconstruction is done in parallel with tracking, us-
ing continuous max flow, and maximising separation between prob-
abilistically defined inside and outside regions. We use posterior
voxel probabilities, which lead to increased robustness to imperfect
image data over the standard approach of using likelihoods.

The main direction for future research is addressing the decrease
in reconstruction quality caused by thin structures. This could be
mitigated for example, by either improving the tracking results or
by marginalising the pose error. Another interesting avenue of re-
search is the additional use of texture information along with his-
tograms. This could further improve tracking accuracy.

Acknowledgments We gratefully acknowledge the support of
EPSRC EP/H050795/1 and EU FP7 287713 REWIRE.

REFERENCES

[1] J. Bastian, B. Ward, R. Hill, A. van den Hengel, and A. Dick. Interac-
tive modelling for AR applications. In ISMAR 2010, pages 199–205.

[2] C. Bibby and I. Reid. Robust Real-Time Visual Tracking Using Pixel-
Wise Posteriors. In ECCV 2008, pages 831–844.

[3] G. Bleser, C. Wohlleber, M. Becker, and D. Stricker. Fast and stable
tracking for ar fusing video and inertial sensor data. In WSCG 2006,
pages 109–115.

[4] N. D. Campbell, G. Vogiatzis, C. Hernández, and R. Cipolla. Auto-
matic object segmentation from calibrated images. In CVMP 2011,
pages 126–137.

[5] N. D. F. Campbell, G. Vogiatzis, C. Hernández, and R. Cipolla. Au-
tomatic 3D object segmentation in multiple views using volumetric
graph-cuts. ImaVis 2010, 28(1):14–25.

[6] M. Everingham, L. van Gool, C. Williams, J. Winn, and A. Zisser-
man. The Pascal Visual Object Classes (VOC) Challenge. IJCV 2010,
88(2):303–338.

Figure 8: Lion tracking and reconstruction example.

Figure 9: Idol tracking and reconstruction example.

Figure 10: Shoe tracking and reconstruction example.

Figure 11: Teddy bear tracking and reconstruction example.

Figure 12: Toy horse tracking and reconstruction example.

[7] G. Klein and D. Murray. Parallel Tracking and Mapping for Small AR
Workspaces. In ISMAR 2007, pages 1–10.

[8] K. Kolev, T. Brox, and D. Cremers. Fast Joint Estimation of Silhou-
ettes and Dense 3D Geometry from Multiple Images. IEEE Trans. on
PAMI 2012, 34(3):493–505.

[9] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. DTAM: Dense
tracking and mapping in real-time. In ICCV 2011, pages 2320–2327.

[10] M. Nikolova, S. Esedoglu, and T. Chan. Algorithms for Finding
Global Minimizers of Image Segmentation and Denoising Models.
SIAM-JAM 2006, 66(5):1632–1648.

[11] Q. Pan, G. Reitmayr, and T. Drummond. ProFORMA: Probabilis-
tic Feature-based On-line Rapid Model Acquisition. In BMVC 2009,
pages 112.1–112.11.

[12] T. Pock, D. Cremers, H. Bischof, and A. Chambolle. An Algorithm
for Minimizing the Piecewise Smooth Mumford-Shah Functional. In
ICCV 2009, pages 1133–1140.

[13] V. A. Prisacariu and I. Reid. PWP3D: Real-Time Segmentation and
Tracking of 3D Objects. IJCV 2012, pages 1–20.

[14] V. A. Prisacariu and I. Reid. Robust 3D hand tracking for human
computer interaction. In FG 2011, pages 368–375.

[15] V. A. Prisacariu, A. Segal, and I. Reid. Simultaneous Monocular 2D
Segmentation, 3D Pose Recovery and 3D Reconstruction. In ACCV

2012, pages 593–606.
[16] B. Rosenhahn, T. Brox, and J. Weickert. Three-Dimensional Shape

Knowledge for Joint Image Segmentation and Pose Tracking. IJCV
2007, 73(3):243–262.

[17] H. Scharr. Optimal Operators in Digital Image Processing. PhD the-
sis, Heidelberg University, 2000.

[18] C. Schmaltz, B. Rosenhahn, T. Brox, J. Weickert, D. Cremers, L. Wi-
etzke, and G. Sommer. Occlusion Modelling by Tracking Multiple
Objects. In DAGM 2007, pages 173–183.

[19] D. Snow, P. Viola, and R. Zabih. Exact Voxel Occupancy with Graph
Cuts. In CVPR 2000, pages 345–352.

[20] L. Vese and T. Chan. A Multiphase Level Set Framework for Im-
age Segmentation Using the Mumford and Shah Model. IJCV 2002,
50(3):271–293.

[21] A. Yezzi and S. Soatto. Stereoscopic Segmentation. IJCV 2003,
53(1):31–43.

[22] S. You and U. Neumann. Fusion of vision and gyro tracking for robust
augmented reality registration. In VR 2001, pages 71–78.

[23] J. Yuan, E. Bae, and X.-C. Tai. A study on continuous max-flow and
min-cut approaches. In CVPR 2010, pages 2217–2224.

