
gSLIC: a real-time implementation of SLIC superpixel

segmentation

Carl Yuheng Ren
University of Oxford, Department of Engineering Science

Parks Road, Oxford, UK
carl@robots.ox.ac.uk

Ian Reid
University of Oxford, Department of Engineering Science

Parks Road, Oxford, UK
ian@robots.ox.ac.uk

June 28, 2011

Abstract

We introduce a parallel implementation of the Simple Linear Iterative Clustering (SLIC)
superpixel segmentation. Our implementation uses GPU and the NVIDIA CUDA frame-
work. Using a single graphic card, our implementation achieves speedups of 10x∼20x from
the sequential implementation. This allow us to use the superpixel segmentation method
in real-time performance. Our implementation is compatible with the standard sequential
implementation. Finally, the software is now online and is open source.

1 Introduction

Superpixels are becoming increasingly popular for use in computer vision applications. Unfortu-
nately, most state-of-the-art superpixel segmentation methods suffers from a high computational
cost, which make them unable to be used in real-time systems. R. Achanta et al. introduced
simple iterative clustering algorithm in [1] to efficiently produce compact and nearly uniform
superpixels. The simplicity, efficiency and the performance of the algorithm make it faster and
more practical for real-time systems than other existing superpixel segmentation methods, like
Normalized cuts [2] and QuickShift [3]. But still, the CPU-sequential implementation of SLIC
works at 300∼400ms to segment a 640x480 image. By reducing the number of iterations for
each cluster can make the algorithm faster, but this will suffer form loss of performance.

In this paper, we detail an implementation of the SLIC algorithm using NVIDIA CUDA
framework. We present improvement 10x∼20x from the original cpu implementation of [1]. We
are not the first to attempt fast image segmentation on GPU, notably [4], which presents exact
GPU implementation of the quick shift superpixel segmentation algorithm. regardless of the
difference in algorithm themselves at the moment, our gSLIC implementation is around 10x
faster then [4].

Our full source code with a simple example can be downloaded from http://www.robots.

ox.ac.uk/~carl/code/gSLIC_with_Sample.zip, in the following sections, we will describe in
detail our algorithm and implementation.

1



Grid

Block(0,0) Block(1,0) Block(2,0)

Block(0,1) Block(1,1) Block(2,1)Block(0,0)

Block(1,0)

Th
re
ad
(0
,0
)

Th
re
ad
(1
,0
)

Th
re
ad
(2
,0
)

Th
re
ad
(3
,0
)

Th
re
ad
(4
,0
)

Th
re
ad
(4
,1
)

Th
re
ad
(3
,1
)

Th
re
ad
(2
,1
)

Th
re
ad
(1
,1
)

Th
re
ad
(0
,1
)

Figure 1: NVIDIA CUDA thread model after [5]

Device

Device Memory

Processor 1

Registers

Processor 2

Registers

Processor N

Registers
...

Multiprocessor M

Shared Memory

Constant Cache

Texture Cache

Processor 1

Registers

Processor 2

Registers

Processor N

Registers
...

Multiprocessor 2

Shared Memory

Constant Cache

Texture Cache

Processor 1

Registers

Processor 2

Registers

Processor N

Registers
...

Multiprocessor 1

Shared Memory

Constant Cache

Texture Cache ….

Figure 2: NVIDIA CUDA memory model after [5]

2 GPU computing and NVIDIA CUDA

GPUs are traditionally been designed to be used for dense 3D graphic rendering, new-generation
GPUs has made GPGPU (General-Purpose Computation on GPUs) available for sovling no-
graphic computer vision problems. NVIDIA CUDA provides a set of SDK, software stack and
compiler that allows for the implementation of programs in C for execution on GPU. The
thread model of CUDA is shown in figure1; CUDA allows C functions (also called kernels)
to be executed multiple times by multiple threads, on multiple GPUs. Each thread carries
a kernel, and for complete utilization of GPU, thousands of threads will be used. Threads
are grouped in blocks, and blocks are grouped into grids (Figure1). Threads in a block share
memory and synchronize while blocks in a grid are independent. Each thread block is executed
on only one multiprocessor but a multiprocessor can execute several blocks at the same time.
The memory model of CUDA is shown in Figure 2. As it is shown, a thread (executed on a
processor within a multiprocessor) have a access to 6 different types of memory: register, local,
shared, global (device), constant and texture memory. Each processor in multiprocessor has its
own set of register and local memory; each multiprocessor has its on-chip shared, constant and
texture cache and shared memory (constant texture cache are both read-only, shared memory is
read-write). Global (device) memory access is much slower than on-chip and built-in memory.

2



Figure 3: example result of SLIC superpixel segmentation

Consequently the bottle neck in CUDA based software is often global (device) memory access.

3 Simple Linear Iterative Clustering (SLIC)

The Simple Linear Iterative Clustering (SLIC) algorithm for superpixel segmentation is pro-
posed in [1]. An example of segmentation result is shown in 3.

The SLIC superpixel segmentation algorithm is a k-means-based local clustering of pixels in
the 5-D [labxy] space defined by the L, a, b values of the CIELAB color space and the x, y pixel
coordinates. The reason why CIELAB color space is chosen is that it is perceptually uniform
for small color distance. Instead of directly using the Euclidean distance in this 5-D space, SLIC
introduce a new distance measure that considers superpixel size. The SLIC algorithm takes as
input a desired number of approximately equally-sized superpixel K, then for a image with N
pixels, the approximate size of each superpixel is N/K. For roughly equally sized superpixels
there would be a superpixel center at every grid interval S =

√
N/K. Let [li, ai, bi, xi, yi]

T be
the 5-D point of a pixel, cluster center Ck should be of the same form[lk, ak, bk, xk, yk]T . The
distance measure Dk is defined as:

dlab =
√

(lk − li)2 + (ak − ai)2 + (nk − bi)2

dxy =
√

(xk − xi)2 + (yk − yi)2

Ds = dlab +
m

S
dxy (1)

where Ds is the sum of the lab distance and the xy plane distance normalized by the grid
interval S. Variable m is introduced to control the compactness of superpixels. The greater the
value of m, the more spatial proximity is emphasized and the more compact the cluster.

With the distance matric defined, the SLIC superpixel segmentation algorithm is simply
local k-means algorithm, which is summarized in the Algorithm 1 in [1]. In order to make
the make the most of the parallel computing on GPU, we modified the algorithm to enable
one-thread-per-pixel computing, as summarized in Table 1

4 gSLIC implementation

As is shown in Figure 4 (left), Our algorithm can be split into CPU and GPU two parts. The
image is acquired by the host function running CPU, then transferred to GPU device memory.
After color space transformation and segmentation has been done by GPU, segmentation mask

3



Algorithm: SLIC superpixel Segmentation

1: Initialize cluster centers [lk, ak, bk, xk, yk]T by sampling pixels at regular grid steps S.
2: Perturb cluster centers in to the lowest gradient position.
4: for each pixel do
5: Assign the pixel to the nearest cluster center based on initial grid interval S;
6: end for
7: repeat
8: for each pixel do
9: Locally search the nearby 9 cluster centers for the nearest one,

then label this pixel with the nearest cluster’s index.
10: end for
11: Update each cluster center based on pixel assignment and compute residual

error E(L1 distance) between last and current iteration.
12:until E ≤ threadshould
13:Enforce Connectivity.

Table 1: Modified SLIC superpixel segmentation algorithm.

Transform to CIELAB colour spaceInput image

Initialize cluster centres

For each pixel

Compute distance metric

Assign pixel to the nearest centre

For each of 9 cluster centres in 
LOCAL neighbourhood 

Iterate till converge

Update cluster centres

Enforce cluster connectivity

CPU GPU

Block(22,1)

Block(22,2)

Figure 4: Work flow of gSLIC (Left) and Block arrangement example for gSLIC (Right)

is transferred back to host function again, where we run a recursion-based post processing
function to enforce the connectivity of all superpixels.

The color space transformation part is naturally pixel-wise parallelizable, so we use 1 thread
per pixel on 16 × 16 blocks. Then we use 1 thread per cluster to initialize cluster centers. The
initial size of each cluster is determined by S defined in section 3. In order to keep compatibility
with CUDA 1.0, in which the maximum number of thread per block is 512, we still use 16× 16
fixed sized block in the local k-means iteration step. For most cases, the size of each cluster is
larger than 256, thus clusters are consisted of multiple blocks, Figure 4(right) is an example of
our block assignment. By using this block assignment, it is guaranteed that all threads within
the same block need only to search the same set of cluster centers in neighborhood for the
nearest one. Thus we pre-load the cluster centers’ information into local shared memory for
efficiency.In each iteration, after all pixels has been assigned a label (which is the index of the
nearest center), we use one cluster per thread to update cluster center. The reason why we
use on thread per cluster instead of on thread per pixel is to avoid atomic operation, which
will slow down the whole algorithm greatly. Besides, This part could be accelerated by using
parallel reduction algorithm, but in current version, since we have already obtained real-time

4



Implementation 320x240 640x480 1280x960

gSLIC 9ms 21ms 86ms

SLIC [1] 88ms 354ms 1522ms

Table 2: Example full processing times for different image sizes

Implementation Kmeans Iteration (GPU) Enforce Connectivity (CPU)

320x240 6.5ms 2.5ms

640x480 13ms 8ms

1280x960 53ms 33ms

Table 3: GPU and CPU time consumption for different image sizes

performance, we did not implemented the parallel reduction. When the K-means iteration
has converged, we transfer the labeled image back to host as segmentation mask. The post
processing to enforce connectivity is the same algorithm as in [1]. Since it is recursion based
method, is not suitable for GPU computing, thus we put it on cpu host function.

5 Library Usage

Because the source code for gSLIC is available online, we have decided to include a brief de-
scription of the usage of the library, as below.

FastImgSeg is the main class. It implements the full gSLIC superpixel segmentation al-
gorithm. It need to be initialized by class constructor or by initializeFastSeg. Initialization
take the size of image and number of segments as parameter. After initialization, call LoadImg
to load user image. Note that current lib only take 4-channel image as input, the forth chan-
nel is reserved for depth information in later version. When user image has been loaded, call
DoSegmentation to segment the image. Currently 3 methods are available: SLIC (SLIC in
CIELAB space), XYZ SLIC (SLIC in XYZ space), RGB SLIC (SLIC in RGB space). The
second parameter of DoSegmentation is the weight m for spatial distance, as defined in sec-
tion 3. When segmentation is finished, resulting segmentation mask will be stored in the public
buffer segMask. User can also call Tool GetMarkedImg to draw segmentation boundary on
markedImage or call Tool WriteMask2File to write segmentation mask to a file.

6 Results

Our implementation is designed to produce the same result as the sequential SLIC implemen-
tation of [1], thus we use the windows executable provided by [1] as our baseline method in
our speed test experiment. We used an Intel Core i7-2600 (3.60GHz) machine with a NVIDIA
GTX460 graphic card to run all our speed test. In Table 2 we show the comparison between the
processing time consumed by SLIC [1] and gSLIC for an single image at three sizes. The times of
speeding up by using our GPU implementation increases with the size of image, achieving 10 20
times faster than the original sequential implementation. In Table 3 we show the processing
time consumed by both the GPU Kmeans iteration part and CPU enforce connectivity. The
time consumption by the recursive enforce connectivity increases much faster than the GPU it-
eration part, so in the future work, we will introduce a parallel version of enforcing connectivity
algorithm.

5



7 Conclusion

In this paper, we introduced a GPU implementation of Simple Linear Interactive Clustering
(SLIC) superpixel segmentation algorithm. We achieved a speed up of 10x∼20x with a single
video card, making superpixel segmentation methods capable for real-time application. Besides,
our implementation makes the SLIC framework extendable for different color spaces and distance
measure, so extensions and modifications can be made easily on top of gSLIC. Finally, all the
source code is available online now.

References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Ssstrunk, “SLIC Superpixels,”
tech. rep., EPFL, EPFL, 2010.

[2] G. Mori, “Guiding model search using segmentation,” in ICCV, pp. 1417–1423, 2005.

[3] A. Vedaldi and S. Soatto, “Quick shift and kernel methods for mode seeking,” in ECCV (4),
pp. 705–718, 2008.

[4] B. Fulkerson and S. Soatto, “Really quick shift: Image segmentation on a gpu,” tech. rep.,
Department of Computer Science, University of California, Los Angeles, 2010.

[5] NVIDIA, NVIDIA CUDA Programming Guide 3.0., 2010.

6


