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Abstract. In this paper we present a unified energy minimization frame-
work for model fitting and pose recovery problems in depth cameras. 3D
level-set embedding functions are used to represent object models implic-
itly and a novel 3D chamfer matching based energy function is minimized
by adjusting the generic projection matrix, which could be parameter-
ized differently according to specific applications. Our proposed energy
function takes the advantage of the gradient of 3D level-set embedding
function and can be efficiently solved by gradients-based optimization
methods. We show various real-world applications, including real-time
3D tracking in depth, simultaneous calibration and tracking, and 3D
point cloud modeling. We perform experiments on both real data and
synthetic data to show the superior performance of our method for all
the applications above.

1 Introduction

Since the recent release of consumer-priced video-rate depth sensors, there has
been an explosion in the field of tracking[1], 3D reconstruction [2] and object
recognition [3], etc. using depth data. A large proportion of these works use a
model-based paradigm; i.e. given an object model, try to align a known object
model with the observed depth map.

Model-based approaches generate model hypotheses and evaluate them on
the available visual observations, defining an objective function that measures
the discrepancy between the visual cues that are expected from a model hypoth-
esis and the observed ones. Based on how the optimization of this objective is
performed, we can define two categories of methods: sampling based solvers and
gradient-based solvers.

Sampling based solvers [1, 4] rely on many evaluations of energy function at
arbitrary points in the multidimensional model hypothesis space. The authors
of [1] solve the energy minimization problem using a variant of Particle Swarm
Optimization (PSO). The GPU implementation of the their method yields near
real-time performance (15Hz). Another recent work in this category is by Ryohei
Ueda [4], which formulates a very similar energy function to [1]. The energy func-
tions in both works [1, 4] above measure the discrepancy between the expected
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depth generated by pose hypothesis and the real depth. In Ryohei Ueda’s work
[4], a particle filter is used for for solving the optimization. Methods in this cat-
egory usually require extensive computational power, because evaluation of the
energy function online is usually computationally expensive.

Gradient-based solvers try to use the depth image gradient to guide the
search for the best hypothesis in the high dimensional hypothesis space. Itera-
tive Closest Point (ICP) [5] framework is the most commonly used method in
this category. Temporary point correspondences between an observed point cloud
and the known model are established by finding the nearest neighbor for each
vertex on the object model, and the resulting sum of pair-wise square-distance
based energy function is differentiated with respect to model hypothesis param-
eters. Using the depth image gradient in this way can yield much more efficient
optimization with many fewer energy function evaluations. However, establish-
ing point correspondences can be as computational expensive as energy function
evaluation. Furthemore, the depth image gradients are often very noisy, thus
they can not be used without smoothing or resolution hierarchy.

This paper presents a unified energy minimization framework for model fit-
ting problems in depth. Instead of projecting the model down to the image plane
and measuring the discrepancy between expected image cues and the observed
ones, the depth images permit us to back project all observed pixels into the
object coordinate, where a level-set embedding function is defined to encode the
object model implicitly. Our formulation of energy function is a natural exten-
sion to the chamfer-matching based tracking method [6] in 2D. This proposed
method has the following advantages over existing model based approaches:

1. The search can be solved efficiently using a gradient-based solver, but instead
of relying on the noisy gradient of the depth image, our method takes ad-
vantage of the smooth gradient of level-set embedding function to guide the
search. Furthermore, for a given level-set embedding, the per-voxel gradients
are independent of the pose parameters, and can therefore be computed in
advance for computational efficiency (for objects with constant shape).

2. Instead of “rendering” the model into each image, which would require z-
buffering or other means to determine depth order, our method back projects
the depth pixels into the object coordinate frame, aiming for alignment with
the zero-level of the level-set embedding function. Thus no z-buffer is required
and the method is inherently more suitable for the parallelization on a GPU.

3. Our framework is a region-based method, so no point correspondences are
required. As we show in subsection 3.2, our framework can, for example, be
used for calibrating the intrinsic parameters of a depth camera without the
need to establish any point correspondences (manually or automatically).

2 Notation

Let Id be a depth image obtained from the depth camera, and the depth image
domain denoted by Ω. Without lose of generality, a pixel at (u, v) in the depth
image is has homogeneous coordinates x = [ud, vd, d]T ∈ Ω with explicit depth
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d. A depth point x in the projected image region of the object is projected from
a 3D object surface point X = [x, y, z, 1]T in the object frame as:

x = PX (1)

where P is a 3× 4 projection.
An object model is implicitly represented by a 3D level-set embedding func-

tion Ψ defined in the object coordinate frame. The surface of an object can be
recovered from the zero-level of the level-set embedding function i.e. Ψ(X) = 0.
The value of Ψ increases monotonically in space as a point moves further from
the nearest surface of the object model. The most convenient form of Ψ is thus
the 3D distance transform Φ, which we use to formulate variants of Ψ for different
applications.

3 Energy Function

Given that a pixel in the projected object region of the depth image is projected
from a 3D point on the object model surface, its value in object coordinates X
can be obtained exactly via back-projection from x.

Fig. 1. Example of our back-projection formulation, from left to right: all pixels on the
depth image are first unprojected into depth camera coordinate by intrinsic matrix A,
then inverse transformed by extrinsic matrix M into the object coordinate, where the
level-set embedding function is defined.

If the projection matrix P is correctly recovered, all depth pixels x in the
object region should be back-projected onto the model surface Ψ(X) = 0. Fig. 1
showcases an example of formulating such projection by the simplest pinhole
model, which decomposes P into an intrinsic (calibartion) matrix A and extrinsic
(pose) matrix M . Our base energy function is defined as:

E =
∑
x∈Ω

Ψ(X) (2)

Thus an evaluation of the energy function comprises back projecting all the
pixels in the depth image into the local coordinate of the object and summing
the corresponding values in the level-set embedding function. As discussed above,
a convenient form of embedding function is a distance transform, though more
specifically we use a truncated distance transform since points that back-project
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outside the local volume of the object are assigned a nominal “large” distance
value. In this way, the pixels in the object region are automatically segmented
from the background and the whole energy function will take minimum value
when the model is aligned with the depth point cloud.

3.1 Tracking rigid 3D objects

The first and simplest application of this energy function is to track rigid 3D ob-
jects in depth. Assuming known object model (encoded in 3D distance transform
Φ), we formulate the level-set embedding function Ψ using German-McClure ob-
ject function, which is robust to outlier pixels in the object region:

Ψ =
Φ2

Φ2 + σ
(3)

where σ is a constant parameter to determine the width of the energy function.
The projection matrix P can be decomposed into intrinsic matrix A and 3 × 4
extrinsic matrix M : P = AM . Assuming calibrated camera (i.e. A known), P
is parameterized only by the pose of the object p, we differentiate the energy
function w.r.t. p

∂E

∂p
=
∑
x∈Ω

2σΦ

(σ + Φ2)2
∂Φ

∂X

∂X

∂p
(4)

Where 2σΦ
(σ+Φ2)2

∂Φ
∂X is the gradient of the level-set embedding function, which

could be computed in advance. We use Levenberg-Marquardt method to compute
the step at each iteration then use local frame to update the pose:

p̃ = −
(
JTEJE + αdiag

[
JTEJE

])−1 ∂E
∂p

(5)

Mn ← M̃(p̃)Mn−1 (6)

where JE is the Jacobian matrix of the energy function. The automatic step-size
controlling parameter α decreases when a step causes the energy function to
decrease and increases when energy function increases.

3.2 Simultaneous tracking and calibration

When the intrinsic matrix A and the extrinsic matrix M are both unknown,
the projection matrix P is parameterized by both the intrinsic parameters k =
[fx , fy , cx , cy , kc] and pose p. We formulate the level-set embedding function
using square energy function, and then we differentiate the energy function w.r.t
the joint intrinsic-pose parameter λ = [k, p]:

Ψ = Φ2,
∂E

∂λ
=
∑
x∈Ω

2Φ
∂Φ

∂X

∂X

∂λ
(7)

Note that the reason that we use the square energy function instead of German-
McClure robust object function for simultaneous calibration and tracking is that
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square energy function provides better convergence around the true value of in-
trinsics and fewer local minima when optimizing in the joint intrinsic-pose pa-
rameter space. Also, we assume that when users try to calibrate a camera using
our method, the frames that are captured have few outliers in the object region.
Again, we use Levenberg-Marquardt method to obtain the optimal intrinsic pa-
rameter k and pose p at each frame and form an estimate via weighted least
squares using all values up to frame t:

k̂ = argk max

{
t∑
i=1

(k − ki)TΣ−1i (k − ki)

}
(8)

where Σi is the covariance of intrinsic parameter k at frame i, and is approxi-
mated by the inverse of the Hessian.

3.3 Point cloud modeling with adaptive primitive models

In this application, we use our energy function to model a point cloud with adap-
tive primitive object models (spheres, cylinders and cones, etc.) with unknown
size. Given the intrinsic parameters and each object class, our energy function
can fit shape primitives into a point cloud with correct scale. Assuming the scale
of object model is along x, y, z axis in object frame, P is decomposed:

P = AMS, S =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

 (9)

where S is the scaling matrix. Now the 3D point X is a function of both the 3D
pose p and the scaling parameters [sx, sy, sz], We optimize the energy function
w.r.t. the joint parameter λ = [sx, sy, sz, p]. We follow the same optimization
method in 3.2 to jointly recover the pose of the object and its size. For multiple
frames, we use weighted least squares as in Section 3.2 to estimate the scale.

4 Experiment and evaluation

We tested our energy function on the three applications we introduced above.
The performance of our energy function is evaluated both quantitatively and
qualitatively for the application of tracking rigid 3D object and stimulations
calibration and tracking. We also showcase the real world result of our energy
function for the application of point cloud modeling. The initial poses of the ob-
jects are manually initialized in the following experiments, but motion detection
and object recognition algorithms can also be used for automatic initialization.

4.1 Tracking rigid 3D object

We have tested our energy function for tracking rigid 3D object on various real-
world sequences, Fig 2 shows an example of using our energy function to track an
real object with heavy occlusion. As is shown, even when more than half of the
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Fig. 2. Film strips showing our algorithm successfully tracking a real rigid object
through heavy occlusion. The upper row shows the observed depth sequence, while
we show the tracking result on the lower row.

object is occluded by hand, the tracker still did not lose track. This is because our
method back projects the depth point on the image into object coordinate and
use the gradient of the level-set embedding function to guide the search for the
best pose. In this way, our energy function is naturally robust to occlusion and
missing data: as long as the back-projected points encodes sufficient information
of the location of the object, our method can converge correctly.

Fig. 3. Quantitative evaluation of the precision and robustness of our method for track-
ing 3D rigid object on synthetic data, with respect to different level of noise and oc-
clusion. The error in translation is measured in pixel while rotation is measured in
modified rodrigues parameters.

Because it is very difficult to evaluate the performance of 3D rigid object
tracker without ground truth data, we use known model to generate synthetic
depth sequences and run our tracker on such sequences to evaluate the preci-
sion and robustness of our energy function for tracking 3D rigid objects. As is
shown in Fig. 3, we generated synthetic depth sequences with 5 levels of noise
and occlusion, ranging from no noise to variance 5 gaussian noise plus random
occlusion. The ground truth translation (in pixel) and rotation (in modified ro-
drigues parameters, MRP) for 600 frames are shown in the first chart on the
first and second row.The rest of the charts shows the mean and 2-times stan-
dard deviation of the error in translation and rotation through all 600 frames on
different noise level. We can see that even with the highest noise and occlusion,
the tracking errors of our method can still remains very low (< 2.5 pixels in all
translation and < 0.01 MRP in all rotation).
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4.2 Simultaneous tracking and calibration

The second set of experiments is to test the performance of our method for
simultaneous calibration and tracking. We first evaluate calibration result us-
ing synthetic data. With known intrinsic camera model, we generated depth
sequences using the same method in subsection 3.1 with 3 different noise levels,
then we use our energy function to run simultaneous calibration and tracking
algorithm on these sequences. Fig. 4 shows the values of intrinsic parameters
estimated from 300 synthetic frames. With low noise, our method can recov-
er the intrinsic parameter accurately from less than 200 tracking frames, even
with variance 5 gaussian distributed noise on the observed depth sequence, our
method can still recover some reasonable intrinsic parameters.

Fig. 4. Quantitative evaluation of our method for calibration on synthetic data, with
respect to different level of noise, all intrinsic parameters are in pixels.

We have also tested our method on real data. Note that, in order to get
precise calibration result, a simple object (such as a box) is not sufficient since it
has ambiguity. A slightly more complex calibration object (see Fig. 5) is used for
the experiment. We initialize the tracking with an initial guess of the intrinsics
(fx = 600, fy = 600, cx = 300, cy = 200, kx = 0), then track the object for 500
frames to estimate the intrinsic matrix. Fig. 5 shows some example frames.

Fig. 5. The leftmost images shows our calibration object, Film strips to the right shows
an example sequence that we used for simultaneous calibration and tracking.

Reprojection error is the most commonly used criteria to evaluate intrinsic
calibration, however, without point correspondences in depth, we can not use
this criteria. Thus we use similar criteria as in D. Herrera et al. [7], which is
based on orthogonal planes, to evaluate the quality of our intrinsic estimation.
As is illustrated in 6, we use the depth camera which we try to calibrate to
capture a depth frame of three known orthogonal planes, then we un-project
all depth pixels into the camera coordinate and compute the angle between the
normals of the three planes. If the intrinsic matrix is correct, the angle between
the three norms should all be 90◦.

With this criteria, we compare our calibration result with the standard
checkerboard calibration method with non-linear refinement [8] and the the
state-of-the-art Kinect calibration toolbox by D. Herrera et al. [7]. Note that,
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Fig. 6. Illustration of the criteria for the evaluation of intrinsic parameters: given a
depth image of three orthogonal planes, we unproject all depth pixels from image
coordinate to camera coordinate, then we compute the angle between the norms of the
three orthogonal planes as criteria. If the intrinsic matrix is correctly recovered, the
angle between the tree norm should all be 90◦.

for the standard checker board method, we attached checker board patter on a
piece of glass then cut off the white area, so that we can do automatic corner
detection in depth image. In Table 1 we shows the experiment result, the three
norm angles computed from our initial guess are also listed in the table for com-
parison. As is shown, our method shows the best result for recovering orthogonal
plane normals. The disadvantage of our method compared to D. Herrera et al.
[7] is that, our method can not calibrate the relative pose between the depth
camera and the color camera. [7] requires the user to define the boundary of
the calibration plane at all frames, however, given a known object model, our
method can calibrate the depth sensor with one-click initialization on the first
frame. No point correspondences, either by manual clicking or automatic corner
detection is required.

Table 1. Quantitative evaluation of the performance of our method for calibration on
real data: criteria are based on the angle between the norms of up-projected orthogonal
planes, all angles are in degree.

Method θ1 θ2 θ3 Overall Err

Ours 90.1849 91.6065 89.6874 2.1040
Checker Board [8] 90.8706 92.1943 87.9618 5.1031
D. Herrera et al. [7] 91.6082 89.2167 90.3549 2.7464

Initial guess 88.4047 87.9643 94.1769 7.8079

4.3 Point cloud modeling with adaptable primitive models

Fig. 7. Illustration of the ground plane removal step: a) fitting a plane patch to any
part of the ground plane. b) Extend the plane patch. c) Ground plane is segmented
out by removing all depth pixels that are close to the extended plane patch.
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Due to the lack of ground truth data, we only qualitatively showcase the ap-
plication of our energy function for point cloud modeling with adaptable primi-
tive models. Fig. 7 illustrates the method we use to remove ground plane. Given
the depth map of a scene, we first remove the ground plane. We do this by fit-
ting a plane patch to any part of the ground plane using our 3D rigid object
tracker. Then we extend the plane to cover whole depth image,and compute the
discrepancy between the extended plane and the depth image on each pixel. All
pixels that has small discrepancies are removed as ground plane.

After removing the ground plane, we initialize primitive models with arbi-
trary size, then run the rigid 3D object tracker to align the primitives to the point
cloud. The primitive models will not fit the point cloud perfectly since the size
is not correct, but the tracking result will be used as initialization for the shape
adaptation step. In the final shape adaptation step we used the energy function
parameterized by extrinsic and scaling matrix to simultaneously workout the
size and position of the primitive models. Results are shown in Fig. 8.

Fig. 8. Illustration of the model adaptation step: a) primitive models are initialized
with arbitrary size; b) using our rigid 3D object tracking energy function, models are
fitted into point cloud as rigid objects; c) shape adaptations energy function is used to
simultaneously deform and track the primitives towards final fitting.

Finally, we also tested the speed of the GPU implementation of the above
3 experiments on a Core-i7 870 (2.93GHz) machine with GTX680 graphic card:
rigid tracking (6 pose parameters) runs at 10ms/frame@640×480; simultaneous
calibration & tracking (11 parameters) and point cloud modeling (9 parameters)
runs at around 20ms∼30ms/frame@640×480. This shows that our method yields
real-time performance in all above applications.

5 Conclusion and future work

In this paper we have presented a novel generic framework for model fitting
problems in depth, which could be used for tracking 3D rigid objects, simul-
taneous calibration and tracking, point cloud modeling, shape adaptation and
etc. Our framework formulates the model fitting problem as an optimization
problem for the best projection matrix that back projects depth points onto
the zero-level of a level-set embedding function, which encodes the 3D shape
of the object. The framework is generic in that various energy functions can
be formulated for different purposes. By leveraging the gradient of the level-set
embedding function, the formulated object functions can be solved efficiently
with gradient-based optimization methods. The per-pixel back projection mech-
anism is perfectly parallelizable thus real-time GPU-based applications can be
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implemented using our framework. We have demonstrated the performance of
our framework in various applications with extensive experiment on both real
and synthetic data.

Fig. 9. Illustration of a 3D latent space of 3D car shapes: valid 3D car models (1∼6)
can be generated from the high-probability (blue) area in the latent space [9].

One possible extension to the current framework is to apply it to track de-
formable or articulated object classes. In subsection 3.1, 3.2 and 3.3, Φ is fully
defined and constant for a given object model, however, we note that Φ could
also be generated from a point in latent object shape space as well. For exam-
ple, the authors in [9] capture 3D shape variance in Gaussian Process Latent
Variable Models (GPLVM) [10] (Fig. 9 shows an example of such latent space).
Our optimization would then proceed as a minimization simultaneously over the
latent space parameters governing the shape and the pose parameters, retaining
all of the advantages of our method.
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