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Abstract

We propose a regression based learning framework that learns a set of shapes on-
line, which can then be used to recover occluded object shapes. We represent shapes
using their 2D discrete cosine transforms, and the key insight we propose is to regress
low frequency harmonics, which represent the global properties of the shape, from high
frequency harmonics, that encode the details of the object’s shape. We learn the re-
gression model using Locally Weighted Projection Regression (LWPR) which expedites
online, incremental learning. After sufficient observation of a set of unoccluded shapes,
the learned model can detect occlusion and recover the full shapes from the occluded
ones. We demonstrate the ideas using a level-set based tracking system that provides
shape and pose, however, the framework could be embedded in any segmentation-based
tracking system. Our experiments demonstrate the efficacy of the method on a variety of
objects using both real data and artificial data.

1 Introduction
In recent years, there has been substantial research in segmentation-based tracking [1, 4, 15].
These methods extract an active contour at each frame (often using level sets [6]) and use
it to update the shape of a tracked object. This process results in the efficient tracking of
previously unseen objects. However, a challenge for these systems is occlusion, because,
unless the shape is constrained in some way, the resulting contour will have an incorrect
shape. Our aim in this paper, then, is to show how to learn the set of legal shapes of a
potentially deformable object incrementally, online, and then how to use this learned model
to detect occlusion and recover the original shape of the object at each frame. We focus
on level set-based segmentation but the concepts could be applied to any other types of
segmentation.

A typical solution to recover the complete shape in the presence of occlusion is to put
constraints on the minimization of the level set energy function. Such methods roughly fall
into two categories: the first category comprises methods which try to learn the space of
legal shapes by learning either a space of embedding functions (e.g. [8, 12]) or a space of
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Figure 1: Left: full human shape, from which we learn the relationship between local prop-
erties and global ones. Middle & Right: when occlusion happens, we can reconstruct the
global shape from observed local properties based on the learnt relationship. (This an illus-
trative example of our idea, for real examples, please refer to Figure 5 and 6)

contours (i.e. the zero level-sets of the embedding functions), e.g. [7]. [12] applies principle
component analysis (PCA) to the set of embedding functions to determine a low dimensional
space of embedding functions while [7] represents the explicit contours with elliptic Fourier
descriptors and uses Gaussian Process Latent Variable Models (GP-LVM) [5] to achieve
the dimensionality reduction. [8] combines the two approaches, by using GP-LVM to learn
spaces of embedding functions compressed with the discrete cosine transform (essentially a
2D Fourier transform). Their method thus allows for holes to be correctly modeled and still
provides a tractable way to learn and use nonlinear shape spaces. In the above-mentioned
methods, the level set energy function is minimized w.r.t. the position in the learned lower
dimensional space. While these methods are indeed robust to occlusions (since the evolution
of the contour is limited to the space of possible shapes), none of them explicitly consider
occlusion modelling or recovery. Furthermore, all of them are designed for offline training.
When new contours are added, the model must be re-trained.

The second school of methods attempts to control the shape in the current frame by
comparing it with a number of recently observed shapes. [4] incrementally builds a dynamic
space of good shape hypotheses from frames up to the current one. The shape of the current
frame is thus constrained by minimizing its distance from a locally Gaussian weighted shape
expectation of the learned space. By continually updating a weight matrix, this method can
incrementally update the space of good shapes without re-training. However, in practice,
both the size of the weight matrix and the time it takes to update it grows as n2 (where n is
the number of observed good shapes), and, in order to keep track of this matrix, all previously
observed shapes need to be stored. Alternatively, by using a fixed size weight matrix, the
method suffers from rapid forgetting. The authors also note that this method is very slow,
making it unsuitable for real-time operation. Another method, [15], embeds a dense level set
in the shape, with the background area set to zero. A variance for each grid point on the level
set is modeled with a single Gaussian, which is updated only where no occlusion is present.
Once occlusion is detected (using area and distance heuristics), the method uses the Gaussian
model on each grid point to cast an expansion force on the level set, to recover the missing
parts. However, the correct updating rate is difficult to tune when the shape of a deformable
object is learned: updating too fast will result in recovering the current shape simply based
on the previous shape, while updating too slowly will suffer from large uncertainty.
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Figure 2: Overview of our shape recovery algorithm.

In this work, we consider the problem of occlusion detection and shape recovery using a
different approach, by modeling the relationship between the local and global properties of
shape. The motivation behind our idea is illustrated in Figure 1, where we show an occluded
human (with only legs visible). Even though the bulk of the person is occluded, a human
observer can reconstruct the shape (i.e. the global property) from the relationship between
the hands, arms, legs etc. (i.e. the local properties). In this paper, we describe a method to
formalize this insight by learning the relationship between the local and global properties.
Specially, we show how Locally Weighted Projection Regression (LWPR) can be used to
learn a regression from the high frequency harmonics to the low frequency ones of a shape,
and how this regression can be used to detect and recover occlusions on previously seen
shapes. We link our shape regression to the pixel-wise posteriors (PWP) level set-based
tracker of [1]. The PWP tracker obtains the target pose (a 6 DoF 2D affinity or 4 DoF 2D
similarity transform) and figure/ground segmentation at each frame. We use the pose to align
the shapes and then add them to the learning framework, as they are received. After a burn-in
period, the framework is able to recover occluded shapes at real time.

The remainder of the paper is structured as follows: we begin in Section 2 by discussing
the discrete cosine transform shape representation and its advantages. Section 3 gives details
of the LWPR algorithm and describes how we detect occlusion, discriminate between occlu-
sion and a new shape, and recover occluded shapes. We show qualitative and quantitative
evaluations of our method in Section 4, and conclude in Section 5.

2 Shape representation via DCT
The 2D discrete cosine transform (DCT) [14] is a special case of the discrete Fourier trans-
form, which represents an image using a series of orthogonal cosine basis functions (har-
monics), each with its own frequency and amplitude. A common use for the DCT is image
compression, it being the basis for the JPEG format. Similarly, [8] used it to compress level
set embedding functions. Our work is based on a different property of the DCT, namely the
fact that the low frequency harmonics contain the coarse bulk properties of the information
in the signal, while high frequency ones contain the “details”. When applied to shapes, this
means that, often, when an object is occluded, parts of its main body may be missing, but
many high frequency details remain. Our experiments suggest that occlusions introduce rel-
atively minor changes to the high frequency DCT coefficients. Based on this observation,
we train a regression model from higher frequency harmonics to lower harmonics using pre-
viously observed complete shapes. Thus, when an occluded shape is observed, we compute
its high-frequency harmonics and use the regressor to determine the expected low frequency
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Figure 3: Structure and work flow of LWPR, inspired by Figure 3 in [13].

harmonics, and hence recover the whole shape by adding the low frequency harmonics to
the high frequency ones. Figure 2 gives an overview of our framework.

We use the DCT to represent a silhouette mask image (i.e. a binary image of the fig-
ure/ground segmentation, with 1 for foreground and -1 for background), so that the shape
representation becomes a set of DCT coefficients. The transform yields a natural hierarchi-
cal representation of a shape in which the top-left, low frequency coefficients in the DCT
capture the overall shape, while the high frequency coefficients (further away from top-left)
capture the details of the shape. Taking the inverse transform of only the first N harmonics
and thresholding at zero yields an approximation for the silhouette.

3 Incremental online learning

In this work we aim to recover the missing part of a shape directly using an online trained
regression (as opposed to learning a shape space), from the high frequency DCT coefficients
to the low frequency ones. We therefore need to learn an incremental approximation of a
highly nonlinear and high dimensional function. Gaussian Process Regression [9] or Sup-
port Vector Machine Regression [11] are both well established methods that fit non-linear
functions globally, but they are not the most suitable solutions for online learning in high
dimensional spaces. First, they require a priori determination of the right basis or kernel
functions. Second, both methods are developed primarily for offline batch training, rather
than for incremental learning, making the addition of a new point computationally expensive.

Instead, we use Locally Weighted Projection Regression (LWPR) [13] as our regression
model. LWPR is a nonlinear function approximator that learns rapidly from incrementally
acquired data, without needing to store the training data. The computational complexity
grows linearly with the number of inputs. LWPR can also deal with a large number of
possibly redundant inputs, which is often the case when tracking rigid objects.

Figure 3 shows the workflow of LWPR. LWPR is based on the hypothesis that high di-
mensional data are characterized by locally low-dimensional distribution. A learned LWPR
has K local models, each comprising a Receptive Field (RF) characterized by a field center
ck and a positive semi-definite distance metric Dk that determines the size and shape of the
neighborhood contributing to the local model; and a locally weighted partial least square (L-
WPLS) regression model characterized by a set of projections uk and respective their weights
βk. Given a set of high frequency DCT coefficients as input xh f , the RF weight, also known
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• Initialize the LWPR with no receptive field.
• For each training shape Φ

◦ compute its compute it’s 1 ∼ N DCT coefficients as low frequency harmonics xl f

and N +1∼M DCT coefficients as high frequency harmonics xl f .
◦ For the kth out of K existing receptive fields:
? Calculate the activation using Equation 1.
? Update uk and βk of the kth LWPLS according to Table 3 in [13].
? Update the distance metric Dk according to Table 4 in [13].
? Check the decreasing rate of MSE at each projection to see

if the number of projections needs to be increased.
◦ If no RF was activated by more than wgen:
? Create a new RF with initial number of projections R = 2, RF
center with cK+1 = xh f and DK+1 = Dde f , K← K +1.

Table 1: Pseudo code for the learning part of the LWPR algorithm.

as the activation, of the kth local model is computed as:

wk = exp
(
−1

2
(xh f − ck)

T Dk(xh f − ck)

)
(1)

Given an input vector xh f , every linear model calculates a prediction x̂l f
k (xh f ) (as is

described in Table 3 [13]). The final output (i.e. a set of low frequency DCT coefficients) is
given by the weighted mean of all K local outputs:

x̂l f =
∑

K
k=1 wkx̂l f

k

∑
K
k=1 wk

(2)

The LWPR learning algorithm is outlined in Table 1. wgen ≤ 1 is a threshold that deter-
mines when to create a new RF: the closer wgen is set to 1, the more overlap local models
will have. Dde f is the initial distance metric in Equation 1, which controls the shape of the
RF and is adapted during learning. The details of updating distance metric and local mod-
els are lengthy so the reader is referred to [13]. The learning algorithm also has a simple
mechanism to determine when to add a new projection to current local model, by recursively
keeping track of the mean-square error (MSE), as a function of the number of projections in
a local model. In the ‘burn-in’ period of our method (when we assume the shapes adopted
by a object are clear and unoccluded and aligned by the PWP tracker [1]), we transform the
observed shape into high frequency and low frequency DCT coefficients (xh f ,xl f ), and train
LWPR on this sequence of observations.

The occlusion detection and shape recovery mechanism of LWPR operates as follows:
when a shape is observed, we first compute the activation using Equation 1. We assume that
we are observing a previously unseen shape if none of the existing RFs is activated by more
than wgen and proceed no further. Activation of any RF in the current LWPR model indicates
that the high frequency details of the current shape have been observed before. The system
then makes a prediction of the low frequency components for the shape and calculates the
difference between the observation and prediction. For an occluded, known (i.e. previously
learnt) shape, we expect agreement between prediction and measurement. So if the mean
square error (MSE) between the observation and the prediction is larger than twice the MSE
in the training data (empirically defined threshold), we consider the shape as being known
but occluded and update it according to our prediction.
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Figure 4: Examples of recovered shapes from artificially occluded images. The left column
of each pair shows false color images(blue=-1, red=1) of the inverse “truncated DCT” (ie.
the approximation of the silhouette via the first 10 to 15 harmonics), while the right column
shows the silhouette obtained from thresholding the approximation at zero. From top row to
bottom row: Cat running, Man walking , Hand, Woman jumping

4 Experiments and performance analysis
We tested our method both qualitatively and quantitatively, on several video sequences and
data sets. We used an Intel Core i7-870 (2.93GHz) machine to run all our experiments. We
denote our method with LWPR-DCT. We begin with the qualitative analysis.

Examples of successful shape recovery using artificially generated occlusions are shown
in Figure 4. The results show that the regression model is capable of recovering the shape
in presence of artificially introduced occlusion. We begin with the inverse truncated DCT
representation of the silhouette, then show the recovered inverse truncated DCT images and
the thresholded forms to compare with original silhouettes. Note that the output silhouettes
match the original ones, demonstrating that the regression is recovering the low frequency
harmonics well. In Figures 5 and 6, we compare our algorithm to the standard pixel-wise
posteriors tracker of [1] on real video sequences and show that we are able to successfully
recover the correct contour, in spite of heavy occlusions. In the first 2 frames of Figure 5 there
are no occlusions, so both our method and the standard PWP tracker yield similar results.
When the hand is occluded, in the other 4 frames, the PWP segmentation is corrupted, while
ours is still correct. Similarly for Figure 6.

We show two failure cases of our method in Figure 7. LWPR-DCT can fail in two ways:
(i) when too many noisy high frequency harmonics are introduced by the partial occlusion,
as is shown in the upper row of Figure 7; (ii) when too much detail is occluded, as is shown
in the lower row of Figure 7.

We designed two sets of experiments to evaluate the performance of our LWPR-DCT
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Figure 5: Example frames from a video tracking a hand, comparing our method to the PWP
tracker of [1]. When no occlusions are present, both method produce similar results. How-
ever, as soon as the hand is occluded, the PWP tracker produces an incorrect segmentation,
while our method still generates correct contours.

Figure 6: Example frames from a video tracking a car, comparing our method to the PWP
tracker of [1]. When the car is not occluded both methods produce similar results. When the
tree is in front of the car the segmentation produced by the PWP tracker is corrupted, while
the one produced by our tracker is not.

Occluded
Shape

After
Thresholding

Original
Shape

Recovered
Shape

After
Thresholding

After
Thresholding

Figure 7: Example failure cases (from the hand video). Top line fails because noisy high
frequency harmonics are introduced, while bottom line fails because details are missing.
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Figure 8: Shape recovery performance evaluation of LWPR-DCT on four datasets using
different number of harmonics as input and output.

framework quantitatively: first we measure on the effectiveness of the shape recovery using
LWPR-DCT and show how many high frequency harmonics should be used as input for
occlusion recovery. Then we compare our algorithm with a state-of-the-art shape prior based
method of [8] (denoted by GPLVM-DCT) on the performance of occlusion recovery and
average processing time.

We used 4 datasets to evaluate the effectiveness of LWPR-DCT: Cat running (artificial
video with few distinct poses, 398 frames), Woman jumping (real video with an average num-
ber of distinct poses, 410 frames), Man walking (real video with many distinct poses, 411
frames, the subject 2 walk of the HumanEva I dataset [10])) and Hand (real video with many
distinct poses, 408 frames). For each video, all frames are segmented and aligned using the
PWP tracker, then added to LWPR-DCT as training data. Then we add different sizes of
artificial occlusions (where each occlusion is rectangular and in a random location) to each
frame. We chose to to generate occlusions artificially both in order to control the percentage
of occlusion and to know ground ground truth. For each frame, we generate 7 levels of oc-
clusion, ranging from 0.1 (10%) to 0.8 (80%). We use the overlap rate R =

Sgt
⋂

Srcv
Sgt
⋃

Srcv
as our

performance criteria, where Sgt is the ground truth shape and Srcv is the recovered shape. We
use the first 10 harmonics to approximate the segmented shapes and run tests on all possible
combinations of the numbers of input and output harmonics (harmonic 10 generating 1 to 9,
9 and 10 generating 1 to 8, etc.). Figure 8 shows the results. Our method gives reasonable
results just by using the 10th harmonic to regress all 1∼9 harmonics. Using the harmonics
8∼10 to regress harmonics 1∼7 gives the best performance in all cases. Performance de-
creases as we increase the number of known harmonics, since small occlusions introduce
extra details, most of which are captured in the highest frequency harmonics.

In the second quantitative experiment, we compare our algorithm to the shape prior
method of [8], which generates embedding functions from a 2 dimensional GPLVM latent
space. Here, segmentation (i.e. the recovering of the unoccluded shape), is an iterative non-
linear minimization in the learned latent space. In our experiment, for each occluded shape,
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Figure 9: Comparing LWPR-DCT to GPLVM-DCT on processing time (left) and occlusion
recovery performance (right).

we run three separate minimizations, we compute the recovery rate for each resulting shape,
and we take an average of those values. We run multiple minimizations (rather than a single
one) because each one can converge to a different shape, so to accurately measure the per-
formance of [8] on our test data we need to consider all these results. As starting points for
the minimization, we use the three points that generate the shapes most similar to the ground
truth from the previous frame. We run both methods on the training and testing data from
the man walking sequence from last experiment. Figure 9 shows the time consumption and
recovery rate of both methods. As a well trained, shape prior based method, GPLVM-DCT
outperforms our method by an average of 10%. But, as is shown in the timings chart, the time
consumption for LWPR-DCT stays constant at around 35ms per shape, while the process-
ing time required by GPLVM-DCT increases with the occlusion rate and it is much larger
than LWPR-DCT (up to 114 times higher). This happens because, when using LWPR-DCT,
each shape recovery is a single (closed form) regression, while, in the GPLVM-DCT case,
segmentation is an iterative process with the number of iterations being proportional to the
percentage of occlusion in the image. Note that the GPLVM-DCT timings shown in Figure
9 are for a single mode search. Since we use three such searches, the actual processing time
per frame it three times as large. In this experiment we used the harmonics 8∼10 to regress
the other 1∼7 harmonics.

5 Conclusions
In this paper, we have presented a novel regression based framework for online shape learn-
ing and recovery. Shapes are represented by discrete cosine transform harmonics and the
set of object shapes is modeled by a regression from the high frequency harmonics to the
low frequency harmonics. Our method incrementally learns a shape model for an observed
object and detects/recovers occlusions at real time. We have integrated our method with a
level-set based tracker, but it could be potentially linked to other types of segmentation and
tracking.

Our method currently has two limitations. First, the DCT representation of shape is
rotation and scaling sensitive, i.e small rotation of a shape will make the high frequency
coefficient change greatly, resulting in very different prediction results. Currently we are
relying on the PWP tracker (which obtains camera pose and segmentation at each frame) to
align the shapes. Secondly, some special types of occlusion are very difficult for LWPR-DCT
to handle: 1) when noisy high frequency components are introduced by small occlusion and
2) when the details of the shape are occluded. In these two cases, LWPR-DCT might give
incorrect predictions, while shape prior based methods would be more applicable.
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While we have demonstrated the value of LWPR for shape recovery under occlusion,
we believe that this general idea has wider application. For example, we could consider
regressing local appearance to global positions, which would have similarity to [2] and [3],
or more ambitiously regress local appearance to global appearance.
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